PAPER CODE NO. **2MA06**

SUMMER 1999 EXAMINATIONS

Degree of Bachelor of Science : Year 0
Degree of Bachelor of Science : Year 1
Degree of Bachelor of Engineering : Year 0

VECTORS AND KINEMATICS

TIME ALLOWED: Three Hours

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in Section A and THREE questions from Section B. The total of the marks available on Section A is 55.

Paper Code **2MA06**

Page 1 of 5

CONTINUED/

SECTION A

- 1. Let ABCD be a parallelogram. Given that $\overrightarrow{AB} = \mathbf{u}$ and $\overrightarrow{BC} = \mathbf{v}$, express each of the following in terms of \mathbf{u} and \mathbf{v}
 - (a) \overrightarrow{AD} ;
 - (b) \overrightarrow{AC} ;
 - (c) \overrightarrow{BP} , where P is the point with $\overrightarrow{PC} = 2\overrightarrow{AB}$;
 - (d) $\overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{DC}$.

[6 marks]

- 2. The points P, Q and R have Cartesian coordinates (0, 2, -1), (1, 3, -3) and (1, 1, -1) respectively where lengths are measured in centimetres. Find
 - (a) the lengths of the sides of triangle PQR, correct to the nearest millimetre;
 - (b) the angles of the triangle PQR in degrees.

[10 marks]

- 3. Let $\mathbf{a} = 2\mathbf{i} + 2\mathbf{j} \mathbf{k}$ and $\mathbf{b} = 5\mathbf{j} 12\mathbf{k}$ where \mathbf{i} , \mathbf{j} and \mathbf{k} are mutually orthogonal unit vectors. Find
 - (i) $|\mathbf{a}|$ and $|\mathbf{b}|$;
 - (ii) $(\mathbf{a} \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b})$;
 - (iii) a unit vector in the direction of $-\mathbf{b}$;
 - (iv) $\mathbf{a} \times \mathbf{b}$.

[9 marks]

- 4. The points A and B have Cartesian coordinates (1, -1, 2) and (2, -4, 3) respectively. Find
 - (a) \overrightarrow{AB} ;
 - (b) the coordinates of the midpoint of AB;
 - (c) the vector equation of the line through A and B.

[6 marks]

- 5. A river flows with velocity $\mathbf{u}=3\mathbf{i}$ km/hour, where \mathbf{i} is a unit vector pointing due East. A ferry sets out to cross the river with velocity $\mathbf{v}=10\mathbf{j}$ km/hour relative to the river. Here, \mathbf{j} is a unit vector pointing due North. Find
 - (a) the speed of the ship relative to the land;
 - (b) in what direction the ship is travelling relative to land (degrees East of North).

[8 marks]

6. Let O be a fixed origin and let \mathbf{i} , \mathbf{j} and \mathbf{k} be constant mutually orthogonal unit vectors. The position vector with respect to O of a particle P is

$$\mathbf{r}(t) = \{2\mathbf{i} + (3t+1)\mathbf{j} + (5t-t^2)\mathbf{k}\}\text{ metres.}$$

at time t seconds. Find

- (a) the position of P at time t = 0;
- (b) the velocity of P at time t seconds;
- (c) the speed of P when t = 2;
- (d) the acceleration of P at time t seconds.

[8 marks]

7. Evaluate the determinant

$$\left|\begin{array}{ccc} 1 & x & 3 \\ x & -1 & 2 \\ 3 & 2 & 4 \end{array}\right|$$

where x is some unknown. Find the value or values of x for which the determinant is zero.

[8 marks]

SECTION B

- 8. The four distinct points A, B, C and D are non-collinear and such that $\overrightarrow{AB} = \mathbf{u}$, $\overrightarrow{BC} = \mathbf{v}$ and $\overrightarrow{CD} = \mathbf{w}$.
 - (a) Find an expression for \overrightarrow{DA} in terms of \mathbf{u} , \mathbf{v} and \mathbf{w} .
 - (b) What condition must be satisfied by \mathbf{u} , \mathbf{v} and \mathbf{w} in order that ABCD should be a parallelogram with AB and DC as opposite sides?
 - (c) Suppose that, in terms of mutually orthogonal unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} ,

$$\mathbf{u} = 2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}, \quad \mathbf{v} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}, \quad \text{and} \quad \mathbf{w} = -2\mathbf{i} + 3\mathbf{j}.$$

- (i) Show that ABCD is not a parallelogram.
- (ii) Show that A, B, C and D lie in the same plane.
- (iii) Find a unit vector normal to this plane.

[15 marks]

9. Suppose that the line \mathcal{L}_1 has vector equation

$$\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + 2\lambda\mathbf{j}$$

and that the line \mathcal{L}_2 has vector equation

$$\mathbf{r} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k} + \mu(\mathbf{i} - \mathbf{j} + 2\mathbf{k})$$

where \mathbf{i} , \mathbf{j} and \mathbf{k} are unit vectors parallel to the coordinate axes Ox, Oy and Oz.

- (a) Write down the coordinates of any two points on the line \mathcal{L}_1 .
- (b) Write down two vectors \mathbf{u}_1 and \mathbf{u}_2 which are respectively parallel to the lines \mathcal{L}_1 and \mathcal{L}_2 .
- (c) Show that the angle between the direction of the lines is approximately 66 degrees.
- (d) Establish whether the lines do or do not intersect and, if they do, find the coordinates of the point of intersection.

 $[15 \,\,\mathrm{marks}]$

10. The planes Π_1 and Π_2 have equations

$$2x - y + 2z = 4$$
 and $x + 2y - z = 1$,

respectively, with respect to the coordinate axes Ox, Oy and Oz. The unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are respectively parallel to these axes.

- (a) Obtain, in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} , unit vectors \mathbf{n}_1 and \mathbf{n}_2 respectively normal to planes Π_1 and Π_2 .
- (b) Find the angle between the planes Π_1 and Π_2 , correct to the nearest degree.
- (c) Show that the line \mathcal{L} of intersection of the planes Π_1 and Π_2 is parallel (or anti-parallel) to the vector $3\mathbf{i} 4\mathbf{j} 5\mathbf{k}$.
- (d) Obtain the vector equation of \mathcal{L} in terms of some parameter λ .

[15 marks]

11. The unknowns w, x, y and z satisfy the simultaneous equations

- (a) Write down an augmented matrix corresponding to this system of equations.
- (b) Use elementary row operations to reduce this augmented matrix to echelon form.
- (c) Deduce that the system of equations has a unique solution and find this solution.
- (d) Verify your solution by direct substitution in the original equations.

 $[15 \,\,\mathrm{marks}]$