PAPER CODE NO. MA06

SUMMER 1997 EXAMINATIONS

Degree of Bachelor of Science : Year 0
Degree of Bachelor of Science : Year 1
Degree of Bachelor of Engineering : Year 0

VECTORS AND KINEMATICS

TIME ALLOWED: Three Hours

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in Section A and THREE questions from Section B. The total of the marks available on Section A is 55.

Paper Code **2MA06**

Page 1 of 4

CONTINUED/

THE UNIVERSITY of LIVERPOOL

SECTION A

- 1. Let $\overrightarrow{OA} = (3, -1 2)$ and $\overrightarrow{OB} = (2, -2, 3)$. Find
 - (a) \overrightarrow{AB} ;
 - (b) the length of the line AB;
 - (c) \overrightarrow{OM} , where M is the point on AB such that $3\overrightarrow{AM} = \overrightarrow{MB}$.

[11 marks]

2. Suppose that A, B, C, D and E are five points in space and that $\overrightarrow{AB} = \mathbf{a}$, $\overrightarrow{BC} = \mathbf{b}$, $\overrightarrow{CD} = \mathbf{c}$ and $\overrightarrow{DE} = \mathbf{d}$. Find expressions for \overrightarrow{EA} and \overrightarrow{CE} in terms of \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{d} .

[5 marks]

3. Let A and B be the points (3,5,2) and (-1,3,1). Write down the vector equation of the line AB.

[7 marks]

- 4. Let $(\mathbf{i}, \mathbf{j}, \mathbf{k})$ be a set of mutually orthogonal unit vectors. Suppose that $\mathbf{a} = \mathbf{i} + \mathbf{j} 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} 2\mathbf{j} + 2\mathbf{k}$. Find
 - (a) $2\mathbf{a} 3\mathbf{b}$, (b) $|\mathbf{b}|$, (c) $\mathbf{a} \cdot \mathbf{b}$, (d) a unit vector parallel to $\mathbf{a} \mathbf{b}$.

Find also

(e) the angle between ${\bf a}$ and ${\bf b}$ correct to the nearest degree.

[17 marks]

5. Let $(\mathbf{i}, \mathbf{j}, \mathbf{k})$ be a right handed set of mutually orthogonal unit vectors. Suppose that $\mathbf{a} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$. Calculate $\mathbf{a} \times \mathbf{b}$. [6 marks]

THE UNIVERSITY of LIVERPOOL

6. Evaluate the determinant

$$\left|\begin{array}{ccc|c} 2 & 3 & -5 \\ 2 & -1 & 3 \\ 1 & -1 & -1 \end{array}\right|.$$

9 marks

SECTION B

7. (a) Let A and B be the points with position vectors \mathbf{a} and \mathbf{b} , respectively. The line l has vector equation

$$\mathbf{r} = (1 - \lambda)\mathbf{a} + \lambda\mathbf{b}.$$

Explain the relation of l to A and B.

Draw a sketch showing a point given by a negative value of λ ?

(b) Let A, B, C and D be the points (2, -3, -1), (3, 0, 1), (7, 4, 11) and (0, -1, -7), respectively. Show that the line through A and B meets the line through C and D, and find the point of intersection X.

 $[15 \,\,\mathrm{marks}]$

- 8. Let O be a fixed origin and \mathbf{i} , \mathbf{j} and \mathbf{k} be constant mutually orthogonal unit vectors.
 - (a) The position vector with respect to O of a particle P is

$$\mathbf{r}(t) = \{3\mathbf{i} + (t-1)\mathbf{j} + (7t-2)\mathbf{k}\}\$$
metres

at time t seconds. Find

- (i) the position vector of P at time t = 0;
- (ii) the velocity of P at time t seconds.

Describe the path of the particle.

(b) Let $\mathbf{a} = (\cos t)\mathbf{i} + (\sin t)\mathbf{j}$. Show that $d\mathbf{a}/dt$ is orthogonal to \mathbf{a} and that both \mathbf{a} and $d\mathbf{a}/dt$ are unit vectors.

[15 marks]

THE UNIVERSITY of LIVERPOOL

- 9. The points A, B and C have Cartesian coordinates (5, 3, -1), (7, 4, 1) and (7, 3, 0), respectively. Find
 - (a) the angles of the triangle ABC, correct to the nearest degree;
 - (b) a unit vector perpendicular to both AB and AC;
 - (c) the Cartesian equation of the plane Π through A, B and C.

[15 marks]

10. Use the method of elimination to find the solution of the simultaneous equations

[15 marks]