THE UNIVERSITY
of LIVERPOOL

SECTION A
1. Simplify:
(a®b)5c™* 1 — 1622
(@) ~ i M) T8 1622
a'>bie 1+ 8z + 16x
[4 marks]
2. Writ 2+5 ingle fracti d simplify it as f.
. rite as a single fraction, and simplify it as far as
2r+5 22?245z & ’ pHLY
possible.
[4 marks]
3. Solve the following quadratic equations:
(a) 22 4+32z—28=0 (b) 122+ 13z —35=10
[4 marks]
4. Sketch the graph of each of the functions:
(a) y=—-2x+4 (b) y=a>—4z —12 (¢) y=|z*— 4z — 12|
[7 marks]

3—-2
5. Given that f(z) = 1 +§, obtain an expression for the inverse function
T
f= ().
[3 marks]
6. -

a) Find the sum of the geometric series »_(—5)" .
n=1

(

(b) Write down the formula for the sum of the infinite geometric series
o
"=! with first term a and common ratio r, when |r| < 1.

n=1

Hence show that Z (%)n =2

n=1

[6 marks]
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7. Evaluate the following limits:

i 4n? — 7 ) 2% — 36
() "h—g}o 9 — 3n — 2n? (b) l‘lgé x? —2x — 24
[4 marks]
8. Differentiate with respect to x:
(a) (5x—6)* (b) (27 +2)/7 (¢c) z3cosz
[8 marks]

9. Write down the equation of the tangent line to the curve y = —2® + 4 at
the point where x = 2.

[3 marks]
10. Find the indefinite integrals:
(a) /(sinx +32° — 4) dw
(b) /e’“ dx
[6 marks]
11. Evaluate the definite integrals:
w/10
(a) / cos 5z dx
0
46
(b) /0 6o 1 dr  [Substitute u = 6 + 1]
[6 marks]
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SECTION B

12. The function y = y(z) satisfies the equation
223 + 3xy? — TyP = 15.

(i) By differentiating both sides of this equation with respect to x find an

d
equation relating z,y and d—y .
x

Hence show that
dy  2x% 4y

dr — Ty?—2zy
(ii) Use this to show that the tangent line to the curve

223 4 3xy® — Ty? = 15
at the point where x = 2 and y = 1 has equation
y=3x—95.
(iii) Show that this line meets the curve with equation
Yy = 2 4+r—4

in exactly one point.

[15 marks]
13. Differentiate the functions:
(a) In(3 —sinz) (b) e'*+3(2 — 3x)
4 — 225
Sz — 52" +8 d
(c) cos’x —5x" + (d) -
[15 marks]
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14. (i) Find the stationary points and the inflection point of the function
f(z) =2 +22% — 152,

in each case giving the values of z and f(x) to 2 decimal places.
Determine also the nature of the stationary points.

(i) Find the three points at which the curve y = a3 + 22? — 15z crosses
the z-axis.

(iii) Using the information from (a) and (b), sketch the curve
y =2+ 222 — 15z2.

(iv) Calculate the total area bounded by the curve and the z-axis.

[15 marks]
15. Find the indefinite integrals:
(a) /x5 cos(z® +8)dx  [Substitute u = 2% + §]
(b) /tan9 x sec’z dr  [Substitute ¢ = tan z]
Evaluate the definite integral:
2v2
= d 4
(c) /0 i ﬁ [Substitute z = £ sin t]
[15 marks]
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Formulae Handbook

This handbook is designed for examination purposes, to be used in the Semester
Examination. The information contained below is not exhaustive of all the for-
mulae given in the lectures which you may need.

1. Solutions to the quadratic equation az? + bx + ¢ = 0 are

—b 4+ /b? — dac

Tr =

2a
2. Power Laws
1 1
(a) =1 (b) ' =10 (c) b= o (d) bx = /b
bm
(g) (™))" =bmm = (")
(h) (ab)" = a"b" Q) (%) ==y

3. Logarithms

a) M=V < z=logy M
b) logb(:vy) logy = +log, y
c) IOgb " = log, z — log, y

(
(
(
(d) logy(z") = nlog, =

4. Series

(a) The nth term of an arithmetic series with first term a and common
difference d is a + (n — 1)d. The sum of its first n terms is na + in(n — 1)d.

(b) The nth term of a geometric series with first term a and common ratio
r*t —1

r—1 "

r is ar™ !, The sum of its first n terms is a x

a
The sum to infinity, when |r| < 1, is :
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5. Trigonometric functions

sinz
cos T
Ccos T
sin

tanx =

cotx

secx

CoOS T

cosecxr = n
sinz

6. Derivatives

(a) If y = 2™ where n is constant then % = nz" ',

dz
(b) If y = uv, where u and v are functions of z, then % = % 4 ydu,
’ ’ dx dz dz
(c) Ify =", where u and v are functions of z, then % = — &
v
(d) If y is a function of u and u is a function of z then % = % x dv,
i du dzx

(0) &) =) x @ =ry g

Function | Derivative
sin x CcoS T
COS ¥ —sinz
tanz sec? x
Inz 1
T
er er
7. Integrals
n _ 1 _.n+l
/ z"dr = PR

/%dw = Inx

/ezdx = ¢e*

/Cosxdx = sinx
/sinmdx = —Cosx

/sechdx = tanxz
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