MATHO11 Exam Solutions Jan 2006
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3. (a) 2 —x — 42 = (z — 7)(x + 6) so solutions are x = 7,z = —6. [2]
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(b) Using the quadratic formula x =

4. (a) y = 4x — 5 represents a straight line with slope 4 meeting the y-axis at y = —5. [2]
(b) y = 2? — 62 — 7 is a quadratic curve, which is U-shaped, crossing the y-axis at y = —7

and the z-axis at x = —1,2 = 7. The curve is symmetric about the line x = —(—6)/2 = 3.
The vertex is at x = 3,y = —16. [3]
(c) y = |#? — 62 — 7| is given from (b) by reflecting the part below the z-axis in the z-axis.
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5. Put y = and solve for z in terms of y = f(x). Then 2z + 7)y = 1 — 3x so

20+ 7
2xy 4+ Ty = 1 — 3z, giving x(2y + 3) =1 — Ty.
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Thus z = f~!(y) = 2y+g and so f'(z) = 295—1—? [3]
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6. (a) Either use the formula a 1 with r = —4,a = —4,n = 5, giving —4 x 1 -
J— 7/' —_— —_—
—820 or simply add up the 5 terms. [3]



(b) The formula is 1 ‘. 1]
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Here a = 2,7 = 2, giving the sum as 135 :%: 1 [2]
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(b) Putting x = 3 in the bottom of the fraction gives 0, as also in the top. Factorise to write

?+rx—12 (z-3)(z+4) x+4

2—-9  (r-3)(x+3) x+3

Now put = 3 to get the limit . [2]

8. (a) Put u =4z + 3. Then y = (4z + 3)® = u° so

dy dydu 5 5
= 6u’ x 4 = 24(4x + 3) (2]

(b) Put uw=2? — 2. Then y = (2 — 2)3 = u5 and

d 5 d 5
d—z = gu% X % = gu% x 3% = ba?(2® — 2)%. (3]
(c) y = 2"sinz = uv with u = 27,v = sinz.
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_y:u—v-|—v—u:x7cosx—|—7x651nx. (3]
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9. The slope of the tangent is the value of d—y at r = 1. Now d—y = —622, so the slope is

x x
—6. When x = 1 we have y = 3, so the tangent line has equation y — 3 = —6(z — 1), giving
y=—6x+09. [3]
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10. (a) /(cosx—2x3—|—5)d:c:/cosxdx—Q/dex+5/1dx:sinx—§x4+5x+0 [4]
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(b) Substitute u = 3x — 5 so that du = 3dx. Then
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12. (i) Differentiate the LHS to get

dy dy
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x dz° — (x I + 2xy) X 3y I [4]
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The RHS has derivative 0 giving the equation 8z° — z e 2zy — 9y e 0. 1]
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8 +§ = 1 and the line has

equation y +1 =x — 1, so that y = x — 2. [4]
(iii) If this line meets the curve y = 22 — 3z + 2 at a point with the horizontal coordinate z,
then 22 — 3z + 2 = 2 — 2, giving the quadratic equation 2> — 4x + 4 = 0. The only solution
is = 2 so the line and the curve meet in exactly one point. [4]

(ii) The slope of the tangent line when z = 1,y = —1 is then

13. (a) Put u =cosx + 2. Then y = In(cosz +2) = Inu, so
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de  du  dr wu  cosx+2 [3]

(b) y =372 (5x + 4) = uv with u = > v = bz + 4.
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(c) In u = sin®z, put w = sinz. Then u = w®. Hence S0 _ 8 2 5wt x cosa =
p dr dw dx
5sin® x cos #. Therefore d—(sin5 x+ 22" —7) = 5sin*x cosx + 82°. [4]
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(d) Put v = cos*z and w = cosz. Then v = w* and —

el et 4w x (—sin )

—4cos® x sinx. Setting also u = 42* — 5, we have
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_cos’x x 122% — (42 — 5)(—4cos’x sinz) 1227 cosx + 4(4a® — 5)sinw

cos® x cos® x

[4]

14. (i) The stationary points occur where f’(x) = 0 and the inflection points where f”(z) =
0. Now f/(x) = 32? —4x — 8 and f"(z) = 62 — 4. [3]

The inflection point occurs where z = 2 = 0.67 and f(z) = =12 = —5.93. 1]
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2.43 or —1.10. These are respectively a local minimum, where f”(x) > 0, and a local
maximum, where f”(z) < 0.

The stationary points are given by the quadratic formula as x =

The corresponding values of f(z) are —16.90 and 5.05. [2]
(ii) The curve y = x® — 222 — 8z crosses the z-axis when z® — 22% — 8¢ = 0. This happens
when x = 0 or when x? — 2z — 8 = 0, giving z = —2 or x = 4 as well. [2]
(iii) Using the information from (a) and (b), sketch the curve y = 23 — 22* — 8z. [3]
(iv) The total area bounded by the curve and the z-axis is made up of two pieces, one
between x = —2 and x = 0, and the other between z = 0 and x = 4.4These are found as
‘/ x) dz| and / f(z) dx‘. Now [ f(z)dx = [(2®—22*—8z)dx = %—§x3—4x2, giving

the first area as |4+ 16/3 — 16| = 20/3 and the second as |64 — 128/3 — 64| = 128/3 making
a total of 148/3 = 49.33. [4]
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15. (a) Substitute u = 2° — 6. Then du = 5z*dz, so
1 1 1
I= /x sin(z® — 6) dr = / gsmudu =% cosu+ C = % cos(z” —6) + C. [4]

(b) Substitute ¢t = tanz. Then dt = sec? x dx, so

7
1
I:/tan(jxseCZxdx:/tGdt %%—C’—?tan z+C. [4]

(c) Substitute z = Zsint. Then dz = 2 cost dt. Therefore

B /1/3 dx z=1/3 —cost z=1/3 %cost L ogE=ls gt — [f°=) 1/3
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Now when z = 0 we have ¢t = 0 and when = = 1/3 we have 1/3 = %sint so that sint = %
1, i—r 1
and t = £. Consequently I = g[t]izo/G = 5(6 —0) = 1_8 =0.17. [7]



