ould answer the S. Section A carrie		${ m HREE}$ questio

JANUARY 2001

SECTION A

1. Simplify

(i)
$$\frac{a^3b^2c^2}{a^5bc^4}$$
; (ii) $\frac{ac+bc}{a^2-b^2}$.

[3 marks]

2. Given that

$$\frac{3}{x} + \frac{2}{y} = \frac{1}{z} ,$$

find an explicit expression for x in terms of y and z.

[3 marks]

3. A straight line passes through the points x = 1, y = 2 and x = 3, y = 8. Find the slope of the line and its intercept in the y-axis. [2 marks]

4. Sketch the graph of each of the functions

(i)
$$y = 3 - x$$
; (ii) $y = x^2 - 2$; (iii) $y = |x^2 - 2|$.

[5 marks]

5. Determine the values of x for which

$$x^2 - x - 6 < 0.$$

[3 marks]

6. Determine which of the following functions are even, odd or neither even nor odd:

(i)
$$x + x^3$$
; (ii) $x^2 \cos x$, (iii) $1 + x + x^2$.

[3 marks]

7. Given that y = f(x) = 3x + 7, obtain an expression for the inverse function $f^{-1}(x)$. [2 marks]

Find the sum of the geometric series

(i)
$$4\sum_{n=1}^{4} \left(\frac{1}{4}\right)^n$$
; (ii) $\sum_{n=1}^{\infty} \left(\frac{2}{7}\right)^n$.

$$(ii) \sum_{n=1}^{\infty} \left(\frac{2}{7}\right)^n.$$

[4 marks]

Evaluate the following limits

(i)
$$\lim_{n \to \infty} \frac{1 + 2n + 3n^2}{3 - 4n + 5n^2}$$
; (ii) $\lim_{x \to 4} \frac{x^2 - 2x - 8}{x^2 - 16}$.

(ii)
$$\lim_{x \to 4} \frac{x^2 - 2x - 8}{x^2 - 16}$$

[4 marks]

Differentiate from first principles, the function 10.

$$y=2x^2.$$

[3 marks]

Differentiate with respect to x11.

(i)
$$7x^5$$
;

$$(ii) (3x-2)^4$$

(i)
$$7x^5$$
; (ii) $(3x-2)^4$; (iii) $x^3\cos(4x)$.

[5 marks]

- Given that $x^3 + 3xy^2 4y^3 = 10$, find $\frac{dy}{dx}$ when x = 1, y = 2. **12.**
- **13.** Find and classify all stationary points of the function

$$f(x) = 4x^2 + \frac{1}{x} .$$

[6 marks]

Find the indefinite integrals **14.**

(i)
$$\int (\sin x - 3x^2) dx$$
; (ii) $\int e^{-3x} dx$.

$$(ii) \int e^{-3x} dx$$

[4 marks]

Evaluate the definite integrals **15.**

(i)
$$\int_0^1 \frac{4}{2x+1} \, \mathrm{d}x$$

(i)
$$\int_0^1 \frac{4}{2x+1} dx$$
; (ii) $\int_0^{\pi/2} 6\cos(3x) dx$.

[4 marks]

SECTION B

The function f(x) has period 2 and is defined to be **16.**

$$f(x) = x^2 - 4x + 3 \qquad 1 \le x \le 3$$

$$f(x+2) = f(x)$$
 for all x .

Determine the values of f(2) and $f(\frac{5}{2})$. Find the slope of the tangent to y = f(x)at $x=\frac{5}{2}$. Determine also the values of f(0) and $f(\frac{1}{2})$ and sketch the graph of y = f(x) for $-1 \le x \le 5$.

Find the value of x where the tangent to this curve at $x = \frac{1}{2}$ meets the x-axis. [15 marks]

17 (a). Differentiate the following

(i)
$$\frac{x-1}{x^2+x+1}$$
; (ii) $e^{2x}\cos(3x+2)$.

$$(ii) e^{2x} \cos(3x+2)$$

(b.) Find the following indefinite integrals

$$(i) \int x \cos(x^2 + 1) dx$$
; $(ii) \int x e^{3x} dx$.

$$(ii) \int x e^{3x} dx$$
.

[15 marks]

The function f is defined to be 18.

$$f(x) = \frac{4}{x+2} - \frac{1}{x-2} \; ,$$

find f' and f''. Show that $x=6, x=\frac{2}{3}$ are stationary points of f and determine their nature. Find the equations of the one horizontal and two vertical asymptotes to the graph of y = f(x). Hence sketch the graph. [15 marks]

19 (a). Evaluate the definite integrals:

(i)
$$\int_0^{\pi/2} x \sin x \, dx$$
; (ii) $\int_1^2 \frac{6x^2}{x^3 + 1} \, dx$.

(ii)
$$\int_{1}^{2} \frac{6x^2}{x^3 + 1} \, \mathrm{d}x \, .$$

(b). Find the three points where the graph of the curve $y = x^3 - x^2 - 2x$ crosses the x-axis. Calculate the total area bounded by the curve and the [15 marks] x-axis.