1. (i) Given that $x \equiv 1 \mod 4$, what are the possible values of $x \mod 12$? Show that every positive integer satisfies at least one of the congruences

 $x \equiv 0 \pmod{2}, x \equiv 0 \pmod{3}, x \equiv 1 \pmod{4}, x \equiv 5 \pmod{6}, x \equiv 7 \pmod{12}.$

(ii) Show that, if p is an odd prime, then $p^n|x(x-2)$ if and only if $p^n|x$ or $p^n|(x-2)$. Find all solutions to the congruence

$$x^2 \equiv 2x \pmod{225}.$$

- **2.** (i) Show that, if n is composite, then $2^n 1$ is composite.
- (ii) Define the term $pseudoprime\ to\ base\ 2$. Using Fermat's theorem, or otherwise, write down $2^{340}\ mod\ 11$ and $2^{330}\ mod\ 31$; also find $2^{340}\ mod\ 31$. Hence or otherwise show that 341 is a pseudoprime to base 2.
- (iii) Now let n be a pseudoprime to base 2 and let $m = 2^n 1$. Show that n|(m-1) and deduce that $(2^n 1)|(2^{m-1} 1)$. Deduce that m is also a pseudoprime to base 2.
- **3.** (i) Describe Miller's test to base b for the primality of an odd integer n with (b, n) = 1. Does 25 pass Miller's test to base 7? Does 35 pass Miller's test to base 6?
- (ii) Let p be an odd prime and n=4p+1. Suppose that $2^p\equiv 1\pmod n$. Does n pass Miller's test to base 2?
- **4.** (i) Define Euler's ϕ -function and write down a formula for $\phi(n)$. Compute $\phi(2 \times 7^2)$, $\phi(2 \times 5 \times 17)$, $\phi(2^4 \times 5 \times 257^5)$, giving your answers in factorized form.

Use the formula to show that, if p is prime and $p^2|n$, then $p|\phi(n)$. Deduce that, if $\phi(n) = 2^k$, then n must be of the form

$$n=2^sq_1q_2\ldots q_m$$

where q_1, \ldots, q_m are distinct odd primes of the form $2^r + 1$.

(ii) Find an odd number n with $\phi(n)=2^{31}$. (It is enough to give n in a factorized form.) Find three even numbers n with $\phi(n)=2^{32}$.

[You may assume throughout the question the fact that: 2^1+1 , 2^2+1 , 2^4+1 , 2^8+1 and $2^{16}+1$ are all prime.]

2MP62

5. Let m be an integer not divisible by 2 or 5. Consider the standard equations which occur in the calculation of the decimal expansion of $\frac{1}{m}$:

$$1 = r_1,
10r_1 = mq_1 + r_2,
10r_2 = mq_2 + r_3, \text{ etc.},$$

where $0 < r_i < m$ and $0 \le q_i \le 9$ for each i so that the q_i are the decimal digits. Prove that, for $j \ge 0$, $r_{j+1} \equiv 10^j \mod m$, and that the length of the period of 1/m in decimal notation is the order of 10 mod m.

Suppose now that m = p is prime (not equal to 2 or 5), and assume that

$$\frac{1}{p} = 0 \cdot \overline{q_1 q_2 \dots q_{2k}}$$

has even period length 2k. Show that $10^k \equiv -1 \pmod{p}$ and deduce that $r_{k+1} = p - 1$.

Show further that the sums $r_2 + r_{k+2}$, $r_3 + r_{k+3}$, etc., are all equal to p, and that the sums $q_1 + q_{k+1}$, $q_2 + q_{k+2}$, $q_3 + q_{k+3}$, etc., are all equal to 9.

- **6.** (i) Define the term $primitive \ root \ mod \ n$.
- (ii) Let n = ab where a > 2, b > 2 and (a, b) = 1. Show that $\phi(a), \phi(b)$ are both even. Show, using Euler's theorem or otherwise, that, for any g with (g, n) = 1,

$$g^{\frac{\phi(n)}{2}} \equiv 1 \pmod{n}.$$

[Hint: First use $\phi(n) = \phi(a)\phi(b)$ and the fact that $\phi(a), \phi(b)$ are both even to show that the given congruence holds mod a and mod b.]

Deduce that n has no primitive roots.

(iii) Verify that 7 is a primitive root mod 22 and hence or otherwise solve the equations

(a)
$$19^x \equiv 17 \pmod{22}$$
; (b) $y^5 \equiv -1 \pmod{22}$.

- **7.** (i) Define the functions d(n) and $\sigma(n)$. Show that for a prime p and $a \ge 1$, $d(p^a) = a+1$ and $\sigma(p^a) = \frac{p^{a+1}-1}{p-1}$. Write down general formulae for d(n) and $\sigma(n)$.
- (ii) Find the smallest n for which d(n) = 15. Make a table of values of $\sigma(p^a)$ for small p and a and find all n for which $\sigma(n) = 72$.
- (iii) Let $n = 2^3 \cdot p \cdot q$, where p and q are odd primes with p < q. Suppose that $\sigma(n) = 3n$. Show that this implies

$$3pq = 5(p+q+1).$$

Find primes p and q which satisfy this equation and show that they are the only ones possible.

8. (i) Let $n=d^2+2$ where $d\geq 1$. Show that $[\sqrt{n}]=d$. Show that the continued fraction expansion of \sqrt{n} is $[d,\overline{d,2d}]$. You may assume the usual formulae, given below.

$$P_0 = 0, Q_0 = 1, \ x_k = \frac{P_k + \sqrt{n}}{Q_k}, \ a_k = [x_k], \ P_{k+1} = a_k Q_k - P_k, \ Q_{k+1} = \frac{(n - P_{k+1}^2)}{Q_k}.$$

Write down formulae for the convergents p_k/q_k of a continued fraction $[a_0,a_1,a_2,\ldots]$.

Find enough convergents of the continued fraction of $\sqrt{27}$ to find two solutions x>0,y>0 to the equation

$$x^2 - 27y^2 = 1.$$

(ii) Let $m=d^2-1$ where $d\geq 2$. Show that the continued fraction expansion of \sqrt{m} is $[d-1,\overline{1,2d-2}].$

2MP62

4

4