2MM15

SECTION A

- 1. Given $e = 1.602177 \times 10^{-19}$ C and $\epsilon_0 = 8.854185 \times 10^{-12}$ F m⁻¹, express $e^2/(4\pi\epsilon_0)$ in standard form, accurate to 4 significant figures. [4 marks]
- 2. Simplify

(i)
$$\frac{(x^3z)^{\frac{1}{2}}}{(xy^{-1})^3(yz^{-2})^{\frac{1}{4}}},$$

(ii)
$$\frac{1}{2+\sqrt{3}} + \frac{1}{2-\sqrt{3}}.$$

[6 marks]

- 3. Evaluate
- (i) $\tan^{-1}(0.3572)$ (in radians to 3 decimal places),

(ii)
$$\binom{7}{4}$$
.

[4 marks]

- 4. A triangle has sides of lengths 7 cm, 6 cm and 4 cm. Find **one** of the angles of this triangle in degrees to 4 significant figures. [Hint: The cosine rule is $c^2 = a^2 + b^2 2ab\cos C$.] [3 marks]
- 5. Given that

$$S = \sum_{i=0}^{N} u_i \equiv 9 + 13 + 17 + \dots + 89,$$

write down the values of u_0 and N and the expression for u_i . Evaluate S. [4 marks]

6. Evaluate the sum of the geometric series

$$\frac{1}{6} - \frac{1}{18} + \frac{1}{54} - \dots - \frac{1}{13122}$$

to 5 decimal places.

[4 marks]

7. Sketch

$$y = \frac{x-2}{x-1}.$$

[4 marks]

- 8. Sketch $f(\theta) = 2\sin(\theta + \frac{\pi}{3})$ for $-\pi \le \theta \le \pi$. Is $f(\theta)$ (i) an even function, (ii) an odd function or (iii) neither? [4 marks]
- 9. Find the roots of the equation $10x^2 9x 7 = 0$. Hence factorise $f(x) = 10x^2 - 9x - 7$. [4 marks]
- **10.** Differentiate $x = (2t)^2 e^{-4t}$ with respect to t. [3 marks]
- 11. Find the area of the region bounded by the lines x = 1, x = 2, y = 0 and $y = 2e^{2x}$. [5 marks]
- **12.** Find all the second order partial derivatives of $\phi(x,y) = (x^2 + y^2)^{\frac{1}{2}}$. [5 marks]
- 13. Express each of the complex numbers in modulus-argument form

$$z_1 = 3 + 4j,$$
 $z_2 = 12 - 5j.$

Hence, or otherwise, find (i) $|z_2/z_1|$ and

(ii) $arg(z_1z_2)$ (in radians to 2 decimal places). [5 marks]

SECTION B

14 (a). Using Pascal's triangle, or otherwise, expand

$$(a+b)^5$$
.

Check your answer for the case a = 1, $b = -\frac{1}{2}$. [8 marks]

(b). Find the first and the second derivatives of $I = A \cos 2t + B \sin 2t$ with respect to t.

Given that

$$\frac{\mathrm{d}^2 I}{\mathrm{d}t^2} + 2\frac{\mathrm{d}I}{\mathrm{d}t} + 3I = 10\cos 2t - 11\sin 2t$$

for all t, show that

$$-A + 4B = 10,$$
 $4A + B = 11.$

Hence, determine I(t).

[7 marks]

15 (a). Evaluate the integrals

$$\int_0^{\frac{\pi}{2}} \theta^2 \sin \theta \ d\theta.$$

[8 marks]

(b). <u>Either</u> Give one example of an improper integral.

Evaluate your integral.

<u>or</u> The function ln(x) is defined by

$$\ln(x) = \int_1^x \frac{1}{t} \mathrm{d}t.$$

Using the properties of definite integrals, show that

(i) $\ln(ax) = \ln(a) + \ln(x)$

(ii)
$$\ln(e^x) = x$$
. [Hint: consider $t = e^s$.] [7 marks]

16. Given the cubic $y = f(x) = x^3 - 9x^2 + 24x - 20$, evaluate f(1), f(4) and f(5).

Hence, or otherwise, find the factors of f(x).

Find and classify the stationary points of f(x).

Sketch f(x). [15 marks]

17 (a). Use De Moivre's theorem to show that

$$\sin 4\theta = 4\sin \theta \cos \theta (2\cos^2 \theta - 1).$$

[8 marks]

(b). Write down the value of $e^{2jk\pi}$, where k is an integer.

Find the complex numbers z for which $z^4 = 16j$. Give your answers in the form $re^{j\theta}$.

Show these numbers as points on the Argand diagram. [7 marks]

18 (a). Evaluate the double integrals

$$\int \int_{\mathcal{R}} \rho(x, y) dx dy, \qquad \int \int_{\mathcal{R}} x \rho(x, y) dx dy, \qquad \int \int_{\mathcal{R}} y \rho(x, y) dx dy$$

over the lamina \mathcal{R} $(0 \le x \le 1 - y, \ 0 \le y \le 1)$ when

$$\rho(x,y) = x^2 + y^2 \text{ Kg m}^{-2}.$$

Hence, find the coordinates of the centre of mass of the lamina \mathcal{R} .

[9 marks]

(b). Given that

$$x = X \cos \alpha - Y \sin \alpha,$$
 $y = X \sin \alpha + Y \cos \alpha,$

where α is a constant, use the chain rule to find $\frac{\partial z}{\partial X}$ and $\frac{\partial z}{\partial Y}$ in terms of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Comment, with the aid of a diagram, on your result. [6 marks]