January 1997 Examinations

Mathematics for Civil Engineers: 2MA2C

Time allowed: 3 hours

INSTRUCTIONS TO CANDIDATES

Use separate answer-books for Sections A and B.

A statistical table is attached to the back of this paper.

Full marks can be obtained for six complete answers. Credit will be given for all questions attempted.

src: 2MA2C-jan97-exam.tex

SECTION A

1. (a) Show that the equations

$$3x - y + 2z = 2$$

$$2x + y + 3z = 3$$

$$kx + 3y + 4z = l$$

do *not* have a unique solution when k = 1.

- (b) With k = 1, for which values of l do the equations have:
 - (i) an infinite family of solutions,
 - (ii) no solution.
- (c) Solve the equations when k=1 and l=4 writing, your answer in parametric, vector form. Interpret the solution geometrically.

2. (a) Find the inverse, A^{-1} , of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12 \end{pmatrix}.$$

You should check your answer by showing that $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$, where \mathbf{I} is the 3×3 identity matrix.

(b) Using your result from part (a), find the (unique) solution to the equations

$$x + 2y + 3z = 4,$$

$$x + 3y + 5z = 2,$$

$$x + 5y + 12z = 7.$$

3. (a) Find and classify the stationary points of

$$f(x,y) = x^2 + a^2y^2 - \frac{1}{2}y^4$$

when $a \neq 0$.

(b) Comment on the case when a = 0. Examine the sign of f(x, y) along both the x-axis and y-axis, when $(x, y) \neq (0, 0)$; hence classify the stationary point(s) in this case.

4. (a) Compute the partial derivatives f_x , f_y , f_{xx} , f_{xy} , f_{yy} , f_{xxx} , f_{xxy} , f_{xyy} and f_{yyy} of the function

$$f(x,y) = (x^2 + y^2)^{\frac{1}{2}}.$$

- (b) Use your results from part (a) to find the Taylor Series at (1,0) for f up to and including terms cubic in the increments δx and δy .
- (c) Use the approximation to the Taylor Series found in part (b) to obtain linear, quadratic and cubic approximations for f(0.9, 0.1).

5. (a) Find values of the numbers a and b such that the change of variables

$$\xi = x + ay, \qquad \eta = x + by$$

transforms the equation

$$\frac{\partial^2 u}{\partial x^2} + 5 \frac{\partial^2 u}{\partial x \partial y} + 6 \frac{\partial^2 u}{\partial y^2} = 0$$

into

$$\frac{\partial^2 u}{\partial \xi \partial \eta} = 0.$$

(You should use a change of variables in which $a \neq b$.) Hence show that the general solution of the equation is given by

$$u(x, y) = f(3x - y) + g(2x - y).$$

(b) Using the result from part (a) find the solution of the above differential equation which satisfies the conditions

$$u(0,y) = y^3, u_x(0,y) = y^2.$$

6. A function g(x) is defined by

$$g(x) = x^2$$
 for $-L \le x < L$ and $g(x + 2L) = g(x)$.

- (a) Sketch the graph of g for $-4L \le x \le 4L$.
- (b) Find the Fourier Series of g. You may use the results

$$\int x^m \sin ax \, dx = -\frac{1}{a} x^m \cos ax + \frac{m}{a} \int x^{m-1} \cos ax \, dx,$$
$$\int x^m \cos ax \, dx = \frac{1}{a} x^m \sin ax - \frac{m}{a} \int x^{m-1} \sin ax \, dx.$$

Write out this series explicitly up to terms in $\cos\left(\frac{5\pi x}{L}\right)$ and $\sin\left(\frac{5\pi x}{L}\right)$.

7. A mine shaft is to driven from (x_1, y_1) to (x_2, y_2) through strata of varying composition. Digging costs per unit length are given by a continuous function, c(y). All other expenses for the project are given by the cost function

$$C = 100 + 20 \int_{x_1}^{x_2} xy(xy_x + y) \, \mathrm{d}x.$$

(a) Explain briefly why the overall expenses corresponding to a curve y(x) are

$$E = C + D = 100 + \int_{x_1}^{x_2} \left\{ 20xy(xy_x + y) + c(y)\sqrt{1 + y_x^2} \right\} dx.$$

Hint: first show that the total cost of digging from (x_1, y_1) to (x_2, y_2) is given by

$$D = \int_{x_1}^{x_2} c(y) \sqrt{1 + y_x^2} \, \mathrm{d}x.$$

(b) The Euler-Lagrange equation is

$$\frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y_x} \right) = 0.$$

- (i) If f does not explicitly depend upon x the integration of the Euler-Lagrange equation is greatly simplified. Explain how. (You do *not* need to prove that your answer is correct.)
- (ii) If a term in f is the total derivative with respect to x of some function then integration of the equation is again simplified. Explain how. (You do not need to prove that your answer is correct.)
- (c) Noting that $xy(xy'+y)=(d/dx)(\frac{1}{2}x^2y^2)$, and using your answers to (i) and (ii), show that the function y(x) which minimises E is given by

$$x = \pm k \int \frac{\mathrm{d}y}{\sqrt{c^2(y) - k^2}}.$$

SECTION B

To be filled in by Dr Al-Bayati...