2MA1C September 1998

Candidates should attempt the whole of Section A and THREE questions from Section B. Section A carries 52% of the available marks.

Note: \mathbf{i} , \mathbf{j} and \mathbf{k} denote unit vectors pointing in the positive x, y and z directions respectively.

SECTION A

1. Find the values of x which satisfy the equation

$$x = \frac{2}{x+1}.$$

[4 marks]

- **2.** The function f is defined by $f(x) = \frac{3x+2}{x+1}$, $x \neq -1$. Find the inverse function $f^{-1}(x)$ and verify that $f[f^{-1}(x)] = x$. [5 marks]
- 3. Sketch the graphs in the xy plane represented by the following equations in polar co-ordinates:

(i)
$$r = \theta$$
, $0 \le \theta < 2\pi$, (ii) $r = 1 + \cos \theta$, $0 \le \theta < 2\pi$.

[5 marks]

- **4.** The three vectors **a**, **b** and **c** are the position vectors (relative to the origin O) of the points A, B and C with co-ordinates A(1, -1, 1), B(3, 2, 6) and C(1, 1, 1). Calculate
 - (i) $\mathbf{a}.\mathbf{b}$, (ii) $\mathbf{b} \times \mathbf{c}$, (iii) $\mathbf{a}.(\mathbf{b} \times \mathbf{c})$.

Hence find the angle between \mathbf{a} and \mathbf{b} , the area of the parallelogram with edges parallel to \mathbf{b} and \mathbf{c} and the volume of the parallelepiped with edges parallel to \mathbf{a} , \mathbf{b} and \mathbf{c} . [7 marks]

- **5.** What is the equation of a plane whose normal is $2\mathbf{i} \mathbf{j} + \mathbf{k}$ and which is a perpendicular distance $2\sqrt{6}$ units from the origin? Verify that this plane passes through the point (4, -2, 2). [5 marks]
 - 6. State L'Hôpital's rule for the evaluation of limits. Hence evaluate

$$\lim_{x \to 0} \frac{\sin^2 x}{\cos x - \cos 3x}.$$

[6 marks]

7. Differentiate the following functions with respect to x:

(i)
$$\cos^3 x$$
, (ii) e^{x^2+1} , (iii) $\frac{x-1}{x^2+1}$, (iv) $\sinh(x^4)$.

[6 marks]

- **8.** Given that $xy^2 + e^x \sin y = 0$, find $\frac{dy}{dx}$ as a function of x and y. [4 marks]
- **9.** Evaluate the following integrals:

(i)
$$\int_0^1 xe^{2x} dx$$
, (ii) $\int_0^1 \frac{x^2}{1+x^3} dx$, (iii) $\int_3^5 \frac{x-5}{(x+1)(x-2)} dx$. [10 marks]

SECTION B

10. Find and classify all stationary points of the function f defined by

$$f(x) = x - 4 + \frac{4}{x+1}, \qquad x \neq -1.$$

Sketch the graph of y = f(x), showing clearly the turning points, asymptotes and the points at which the graph intersects the x and y axes. Show that the tangent to the graph at x = 3 crosses the y axis at $y = -\frac{9}{4}$. [16 marks]

11. Find the equation of the plane which passes through the points A, B and C with co-ordinates A(1, -2, 1), B(2, 2, 2) and C(1, 0, 2). Show that the perpendicular distance of this plane from the origin is 2 units.

Find the perpendicular distance of the point P(1,1,1) from the plane. A straight line is drawn from P perpendicular to the plane, meeting it at Q. Write down the vector from P to Q, and hence find the co-ordinates of Q. [16 marks]

12. Write down the definitions of $\sinh x$ and $\cosh x$ in terms of e^x and e^{-x} . Hence prove that $2\cosh^2 x - 1 = \cosh 2x$, and show that

$$\cosh 4x + 4\cosh 2x + 3 = 8\cosh^4 x.$$

The inverse hyperbolic sine function $y = \sinh^{-1} x$ is defined by the equation $\sinh y = x$. Show that $e^{2y} - 2xe^y - 1 = 0$, and hence prove that

$$\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}).$$

Use this formula to verify that $\sinh^{-1} x + \sinh^{-1} (-x) = 0.$ [16 marks]

13. A force \mathbf{F} is applied at a point on a rigid body with position vector \mathbf{r} relative to the origin O. Show that the magnitude of the vector $\mathbf{M} = \mathbf{r} \times \mathbf{F}$ gives the magnitude of the turning moment of \mathbf{F} about O and the direction of \mathbf{M} gives the axis of the rotation which \mathbf{F} would produce.

A rigid body contains the points P_1 , P_2 , and P_3 with cartesian co-ordinates $P_1(1,2,3)$, $P_2(2,-1,1)$ and $P_3(-1,1,1)$. Write down the position vectors \mathbf{r}_1 , \mathbf{r}_2 and \mathbf{r}_3 of P_1 , P_2 , and P_3 respectively. A force $\mathbf{F}_1 = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ is applied at P_1 and a force $\mathbf{F}_2 = \mathbf{i} - 2\mathbf{j} - \mathbf{k}$ is applied at P_2 . Show that their total turning moment about O is given by

$$(\mathbf{r}_1 \times \mathbf{F}_1) + (\mathbf{r}_2 \times \mathbf{F}_2) = 2\mathbf{i} + 8\mathbf{j} - 6\mathbf{k}.$$

Additional forces $\mathbf{F}_3 = \lambda(7\mathbf{i} + 2\mathbf{j} + 5\mathbf{k})$, applied at P_3 , and \mathbf{F}_4 , applied at O, also act on the body. Assuming that the body is maintained in static equilibrium under the action of all four forces, find the value of λ and show that

$$\mathbf{F}_4 = \frac{1}{3}(5\mathbf{i} + 7\mathbf{j} + 10\mathbf{k}).$$

[16 marks]

14. The curve C is the section of the graph $y = \frac{1}{3}x^3$ which lies between x = 0 and x = 1. Draw carefully a sketch showing C and the straight line $y = \frac{1}{3}x$ on the same diagram. Show that the area enclosed between the curve C and the straight line has the value $\frac{1}{12}$ units.

Show that the volume of the solid generated by rotating the area between C and the x axis through 360° about the x axis is $\frac{1}{63}\pi$ units.

Finally, show that the area S of the curved surface of this solid is given by

$$S = \frac{2}{3}\pi \int_0^1 x^3 \sqrt{1 + x^4} \, dx,$$

and hence evaluate S.

[16 marks]