2MA1C June 1998

Candidates should attempt the whole of Section A and THREE questions from Section B. Section A carries 52% of the available marks.

Note: \mathbf{i} , \mathbf{j} and \mathbf{k} denote unit vectors along the positive $x,\ y$ and z axes respectively.

SECTION A

1. Solve the quadratic equation $x^2 - 2x - 8 = 0$. Hence find the values of x which satisfy the equation $e^{2x} - 2e^x - 8 = 0$. [5 marks]

2. The function f is defined by $f(x) = \frac{2x-1}{x+4}$, $x \neq -4$. Find the inverse function $f^{-1}(x)$ and verify that $f[f^{-1}(x)] = x$. [4 marks]

3. Sketch the graphs in the xy plane represented by the following equations in polar co-ordinates:

(i)
$$r = \frac{1}{2}\theta + 1$$
, $0 \le \theta < 3\pi$, (ii) $r = 2\sin\theta$, $0 \le \theta < \pi$.

[5 marks]

4. The three vectors **a**, **b** and **c** are the position vectors (relative to the origin O) of the points A, B and C with co-ordinates A(2, -2, 1), B(4, 0, -3) and C(1, 2, -3). Calculate

(i)
$$\mathbf{a}.\mathbf{b}$$
, (ii) $\mathbf{b} \times \mathbf{c}$, (iii) $\mathbf{a}.(\mathbf{b} \times \mathbf{c})$.

Hence find the angle between **a** and **b**, the area of the parallelogram with edges parallel to **b** and **c** and the volume of the parallelepiped with edges parallel to **a**, **b** and **c**. [7 marks]

5. What is the equation of the plane whose normal is $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and which passes through the point (1, -4, -3)? What is the perpendicular distance of this plane from the origin? [6 marks]

6. State L'Hôpital's rule for the evaluation of limits. Hence or otherwise evaluate

$$\lim_{x \to 0} \frac{1 - \cos x}{\cos x - \cos 2x}.$$

[6 marks]

7. Differentiate the following functions with respect to x:

(i)
$$\cos(x^5)$$
, (ii) $e^{\sin x}$, (iii) $\frac{x^2}{1-x^3}$, (iv) $\sinh^3 x$.

[6 marks]

8. Given that $y = x^3 \sin y$, find $\frac{dy}{dx}$ as a function of x and y. [3 marks]

9. Evaluate the following integrals:

(i)
$$\int_0^{\frac{\pi}{2}} x \sin x \, dx,$$

(ii)
$$\int_0^{\frac{\pi}{4}} \frac{\cos 2x}{2 + \sin 2x} dx$$

(i)
$$\int_0^{\frac{\pi}{2}} x \sin x \, dx$$
, (ii) $\int_0^{\frac{\pi}{4}} \frac{\cos 2x}{2 + \sin 2x} dx$, (iii) $\int_4^6 \frac{x + 7}{(x + 2)(x - 3)} dx$.

[10 marks]

SECTION B

10. Find and classify all stationary points of the function f defined by

$$f(x) = x - 1 + \frac{1}{x - 3}, \qquad x \neq 3.$$

Sketch the graph of y = f(x), showing clearly the turning points, asymptotes and the points at which the graph intersects the x and y axes. Show that the tangent to the graph at x = 6 passes through the origin. [16 marks]

11. Find the equation of the plane which passes through the points A, B and C with co-ordinates A(6,1,4), B(4,-1,3) and C(2,-4,1). Show that the perpendicular distance of this plane from the origin is 4 units.

Find the perpendicular distance of the point P(3,1,1) from the plane. A straight line is drawn from P perpendicular to the plane, meeting it at Q. Write down the vector from P to Q, and hence find the co-ordinates of Q. [16 marks]

12. Write down the definitions of $\sinh x$ and $\cosh x$ in terms of e^x and e^{-x} . Hence prove that $2\cosh^2 x - 1 = \cosh 2x$, and show that

$$\cosh 4x = 8\cosh^4 x - 8\cosh^2 x + 1.$$

The inverse hyperbolic cosine function $y = \cosh^{-1} x$ is defined by the equation $\cosh y = x$, where $y \ge 0$ and $x \ge 1$. Show that $e^{2y} - 2xe^y + 1 = 0$, and hence prove that

$$\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}).$$

Hence or otherwise show that

$$\frac{d}{dx}(\cosh^{-1}x) = \frac{1}{\sqrt{x^2 - 1}}.$$

[16 marks]

13. The vector equations for two non-parallel straight lines L_1 and L_2 are respectively:

$$\mathbf{r} = \mathbf{a} + \lambda \mathbf{u}, \quad \text{and} \quad \mathbf{r}' = \mathbf{c} + \mu \mathbf{v},$$

where λ and μ are variable scalar parameters.

Show that the perpendicular distance d between L_1 and L_2 is given by

$$d = \frac{|(\mathbf{a} - \mathbf{c}).(\mathbf{u} \times \mathbf{v})|}{|\mathbf{u} \times \mathbf{v}|}.$$

The framework supporting a bridge contains two thin linear struts AB and CD, where the cartesian co-ordinates of the points A, B, C and D are given by A(1,3,4), B(7,9,5), C(2,5,7) and D(5,9,8). Find vector equations for the straight lines AB and CD. Hence calculate the perpendicular distance between AB and CD. [16 marks]

14. The curve C is the section of the graph $y=2x^{\frac{1}{2}}$ which lies between x=0 and x=1. Draw carefully a sketch showing C and the straight line y=2x on the same diagram. Prove that the area enclosed between C and the straight line has value $\frac{1}{3}$ unit.

Show that the volume of the solid generated by rotating the area between C and the x-axis through 360° about the x axis is 2π units.

Finally, show that the surface area S of the curved surface of this solid is given by

$$S = 4\pi \int_0^1 \sqrt{x+1} \, dx,$$

and hence evaluate S.

[16 marks]