PAPER CODE NO. | EXAMINER : Grant Malcolm TEL. NO. 794 6794
COMP317 DEPARTMENT : Computer Science

THE UNIVERSITY
of LIVERPOOL

JANUARY 2003 EXAMINATIONS

Bachelor of Arts : Year 3
Bachelor of Engineering : Year 3
Bachelor of Science ;: Year 3

SEMANTICS OF PROGRAMMING LANGUAGES

TIME ALLOWED : Two Hours and a Half

INSTRUCTIONS TO CANDIDATES
Answer four questions only.

If you attempt to answer more questions than the required number of questions (in any section),
the marks awarded for the excess questions will be discarded (starting with your lowest mark).

PAPER. CODE COMP317 page 1 of 10 Continued

THE UNIVERSITY
of LIVERPOOL

1. Some languages, such as Dijkstra’s Guarded Command Language, allow non-deterministic
programs; for example, given Boolean expressions b; and b, and programs ¢; and ¢;, the
program

(b = 1)]| (b2 =)

is evaluated as follows: starting in a state s, the guards b; and b, are evaluated;

¢ if neither guard evaluates to true, the program fails (‘crashes’);

¢ if exactly one of the guards evaluates to true, then the corresponding program is
executed in state s (i.e., if b; is true, then ¢; is executed; if by is true, then 3 is
executed);

o if both guards evaluate to true, then either ¢; or ¢; is executed (i.e., a non-deterministic
choice is made as to which program is executed).

For example, the following program sets z to the minimum of the values of x and v
(x <=y = 2z :=x%x) [(¥y<=x 2 z :=v)
(a) Extend the syntax of IMP programs to include programs of the form

(b —e1) [| (b2 — c2)

[10 marks]

(b) Extend the operational semantics of IMP to give a semantics for these programs (the
syntax and operational semantics of IMP are summarised in Appendix A). [15 marks]

PAPER. CODE COMP317 page 2 of 10 Continued

s o T
e

THE UNIVERSITY
of LIVERPOOL

2. The syntax of the programming language IMP and the denotational semantics for arith-
metic expressions are summarised in Appendix A. Suppose we want to extend the syntax
of arithmetic expressions in IMP with a post-increment operator, to include expressions
of the form z++, where x is a variable (i.e., of syntactic class {Loc)). In any state s, the
value of the expression z++ is just the value of x in s, but evaluating the expression has
the side-effect of updating the state so that x is incremented by 1.

(a) Give a BNF description of the syntax of arithmetic expressions that includes expres-
sions of the form =++. [10 marks]

(b) In order to give a denotational semantics for arithmetic expressions with side-effects,
we need to change the type of the denotation function .A[a] for arithmetic expressions
a, so that it returns both the value of the expression and the updated state. Le., we
want to define a denotation function

Ala] : State — Intx State

by induction on the form of arithmetic expressions a. For example, in the case a has
the form a; +as, we define:

Alay + az])(s) = n+ Afas](s") where Afai](5) = (n,s') .

This says first evaluate the leftmost expression a,, giving the integer value n and
updated state &', then evaluate a; in that updated state.

i. Complete the inductive definition of A[a], including the case where a is of the

form z++. [10 marks]
ii. Modify the definition of C[[z : = a] to take account of the changes in the defini-
tion of A[a]. [5 marks]

PAPER. CODE COMP317 page 3 of 10 Continued

THE UNIVERSITY
of LIVERPOOL

3. The axiomatic semantics of IMP is summarised in Appendix B. The following program
sets the variable x to the value of 2¥:

X o= Log

while not{y = 0}
do

X = 2 ¥ x
yor=y = 1

(a) Give a suitable precondition and postcondition to specify that the program sets x to
the value of 27, [5 marks]

(b) Give a suitable invariant for the loop, which will allow you to prove the correctness
of the program with respect to the pre- and post-conditions you gave in part (a).
[10 marks]

(c) Give a proof of the correctness of the program in the annotated-program style.
[10 marks]

4. The OBJ semantics of a simple imperative language is given in Appendix C.

(a) Give an OBJ proof script that shows that the following program sets * Z to the square

of "X+ Y:
P2 o= X + 'Y ;
'X = 'R * X ;
PY o= PR OE LY ;
'Z 1= ‘X 4+ °Y
[8 marks]
(b) Do the reduction in your answer to part (a) by hand. [12 marks]

(¢) What property of multiplication and addition is needed for the proof to work? Express
this property as an OBJ equation.
[5 marks]

PAPER CODE COMP317 page 4 of 10 Continued

1L 1 -,
P, T e

THE UNIVERSITY
of LIVERPOOL

5. (a) Give a constructive proof and proof-witness of
(ANC=>B=0=A=18.

[9 marks]

(b) Give a constructive proof and proof-witness of
AN(A=B)=B.

[9 marks]

(c) Replacing C' with A = B in the proposition in part (a) allows us to apply the proof-
witness from part (a) to the proof-witness from part (b), giving a A-term that is a
proof-witness of

PN o

Reduce this A-term as far as possible. [7 marks]

PAPER CODE COMP317 page 5 of 10 Continued

of LIVERPOOL

Appendix A: Syntax and Semantics of IMP

Syntax of IMP

(Aexp) ::= (Num} | (Loc) | {Rexp) + (Aexp)
| (Bexp) - (Bexp) | (Rexp) * (Aexp)

(Bexp) ::= true | false | {Rexp) = (RAexp} | (Rexp) < (Aexp)
| (Bexp) and (Bexp) | (Bexp) or (Bexp) | not (Bexp)

(Com) ::= skip | (Loc) := (Aexp) | (Com} ; {Com)
| if (Bexp) then (Com) else (Com)
| while (Bexp) do (Com)

Summary of the Operational Semantics

Operational semantics of programs:

e (skip, s) — &' if and only if s = &'

If (a,s) =+ nthen (z : = g, s) = s[n/z]

If (¢, 8) — &' and (cp, s") — " then (¢; ; ca,5) — 8"

If (b, 8) — true and (¢;,s) —+ &' then (1£bthene; elsecy,s) —+ &'

If (b,s) — false and (co, 5) — &' then (if bthenc) elsecy,s) — '

If (b, s) — false then (whilebdoe, 8) — s

If (b, s) —+ true and (¢, s) — s’ and (whilebdoc,s') — "
then (whilebdoe, s) = s"

Summary of the Denotational Semantics
o Afn](s) =n
o Alz](s) = s(z)
o Ala, + a2]J(s) = Afa:] + Afaz]
o Ala; - a2])(s) = Afa:]] — Alaz]
o Afar * az]l(s) = Afai1] * Afas]
o Bltrue](s) = true
e B[false](s) = false
e Bla; = as](s) = v, where v = true if Afa,](s) = Afaz](s), and v = false otherwise

PAPER CODE COMP317 page 6 of 10 Continued

THE UNIVERSITY
of LIVERPOOL

e B[a; < az](s) = v, where v = true if Afa;](s) < Afaz](s), and v = false otherwise
¢ B[not b](s) = —~ B[b](s)

e B[b, and bo](s) = Blbi]|(s) A B[b:](s)

o Bb, or b](s) = Blb](s) v Blb:](s)

e C[skip](s) = s

o Clx :=d](s) = s[n/z]

® Cler 5 e2](s) = Cllea](Cea]l(s))

o If B[b](s) = true then C[if b then ¢; else ¢3] = C[cy](s)

o If B[b](s) = faise then C[if b then ¢; else co] = Clle2](s)

o If B[b](s) = false then C[while b do c] = s

e If B[b](s) = true then C[while b do ¢] = C[while b do c](C[c](s))
Appendix B: Hoare Logic
{A}skip{A}
{Ale/z]}z :=e {A}

{A}la{B} {B}ea{C}
{A}e s e {C}

A=A {A}c{B} B=5B
{A}e{B'}

{Anb} e {B} {AA-b}ce{B}
{A}ifbthenc, elsec; { B}

{Anb}e{A}
{A}whilebdoc{AA-b}

PAPER CODE COMP317 page 7 of 10 Continued

THE UNIVERSITY
of LIVERPOOL

Appendix C: OBJ Semantics

*** the programming language: expressions ***
obj EXP is pr ZZ
pr QID *{sort Id to Var)
gsort Exp.
subsorts Var Int < Exp

op _+_ : Exp Exp -> Exp [prec 10]

op _*_ : Exp Exp -> Exp [prec 8]

op -_ : Exp -> Exp

op _—-_ : Exp Exp -> Exp [prec 10]
endo

obj TST is pr EXP

sort Tst

subsort Bool < Tst

op _=<_: Exp.Exp -> Tst [prec 15]

op _<=_ : Exp Exp -> Tst [prec 15]

op _is_ : Exp Exp -> Tst [prec 15]

op not_ : Tst -> Tst [prec 1]

op _and_ : Tst Tst -> Tst [prec 20]

op _or_ : Tst Tst —> Tst [prec 25]
endo

*#% the programming language: basic programs ***
obi BPGM is pr TST

sort BPgm .

op _:=_ : Var Exp -> BPgm [prec 20]
endo

PAPER CODE COMP317 page 8§ of 10

Continued

THE TNIVERSITY
of LIVERPOOL

*** gsemantics of basic programs ***
th STCRE is pr BPGM .

sort Store .

op initial : -> Store .

op _[[_]] : Store Exp -> Int [prec E5]

cp _[[_]] : Store Tst -> Bool [prec 65]

op _i_ : Store BPgm -> Store [prec 60]

var S5 : Store .

vars X1 ¥2 : Var .

var I : Int .

vars E1 EZ2 : Exp .

vars T1 T2 : Tst .

var B : Bool

eq initial [[X1]] = O .

eq 5 [[I]] = TI.

eq S [[- El]] = -(s[[El]]} .

egq S [[El - E2]] = (S[[E1l]]) - (SI[[E2]])

eq S [[El + E2]] = (S[[E11]1) + (S[[E2]])

eq S [[E1l * E2]] = (SI[[E1]1]) * (S[[E2]])

eg S [[B]] = B .

eq S [[El is E2]] = (S [[E1l]]) is (s [[E211)

eq S [[El <= E2]] = (S [[E1l]]) <= (8 [[E2]])

eq S [[El < E2]] = (8 [[E1]]1} < (5 [[E2]])

egq S [[not T1l]] = not(S [[T1l]])

eq S [[T1 and T2]] = (S [[T1]]) and (S [[T2]11])

eg S [[T1l or T2]] = (8 [[T1]1]]) or (8 [[T2]])

eq S ; X1 :=FE1 [[X1]] = 8 [[El])]

cgqg S XL = EL T[X2]] = 8 [[X%X2]] if X1 =/= X2
endth

*** extended programming language ***
obj PGM is pr BPGM .

sort Pgm .

gubsort BPgm < Pgm .

op skip : -> Pgm .

O i : Pgm Pgm -> Pgm [assoc prec 50]

op 1if_then_else_fi : Tst Pgm Pgm -> Pgm [prec 40]

op while_do_od : Tst Pgm -> Pgm [prec 40]
endo

PAPER. CODE COMP317 page 9 of 10 Continued

THE UNIVERSITY
of LIVERPOOL

th SEM is pr PGM .

pr STORE .

sort EStore .

subsort Store < EStore

op _;_ : EStore Pgm -> EStore [prec 60]
var S5 : Store

var T : Tst

var Pl P2 : Pgm .

eq S ; skip = &8 .

eq S5 ; (Pl ; P2) = (5 ; Pl) ; P2

cg S ; if T then Pl else P2 fi = 8§ ; P1
if sS[[T]]

cg S ; if T then Pl else P2 fi = 5 ; P2

if not(sS[I[T]])

cq S5 ; while Tdo Pl od = (8 ; P1)
it S5[FT]]
cg S ; while T do PL od = 8

if not(S[[T]1]1}

endth

PAPER CODE COMP317 page 10 of 10

; while T do Pl od

End

