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1. Some languages, such as Dijkstra’s Guarded Command Language, allow non-deterministic
programs; for example, given Boolean expressions b; and b, and programs ¢; and ¢;, the
program

(b = 1) ]| (b2 = )

is evaluated as follows: starting in a state s, the guards b; and b, are evaluated;

¢ if neither guard evaluates to true, the program fails (‘crashes’);

¢ if exactly one of the guards evaluates to true, then the corresponding program is
executed in state s (i.e., if b; is true, then ¢; is executed; if by is true, then 3 is
executed);

o if both guards evaluate to true, then either ¢; or ¢; is executed (i.e., a non-deterministic
choice is made as to which program is executed).

For example, the following program sets z to the minimum of the values of x and v
(x <=y = 2z :=x%x) [ (¥y<=x 2 z :=v)
(a) Extend the syntax of IMP programs to include programs of the form

(b —e1) [| (b2 — c2)

[10 marks]

(b) Extend the operational semantics of IMP to give a semantics for these programs (the
syntax and operational semantics of IMP are summarised in Appendix A). [15 marks]
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2. The syntax of the programming language IMP and the denotational semantics for arith-
metic expressions are summarised in Appendix A. Suppose we want to extend the syntax
of arithmetic expressions in IMP with a post-increment operator, to include expressions
of the form z++, where x is a variable (i.e., of syntactic class {Loc)). In any state s, the
value of the expression z++ is just the value of x in s, but evaluating the expression has
the side-effect of updating the state so that x is incremented by 1.

(a) Give a BNF description of the syntax of arithmetic expressions that includes expres-
sions of the form =++. [10 marks]

(b) In order to give a denotational semantics for arithmetic expressions with side-effects,
we need to change the type of the denotation function .A[a] for arithmetic expressions
a, so that it returns both the value of the expression and the updated state. Le., we
want to define a denotation function

Ala] : State — Intx State

by induction on the form of arithmetic expressions a. For example, in the case a has
the form a; +as, we define:

Alay + az])(s) = n+ Afas](s") where Afai](5) = (n,s') .

This says first evaluate the leftmost expression a,, giving the integer value n and
updated state &', then evaluate a; in that updated state.

i. Complete the inductive definition of A[a], including the case where a is of the

form z++. [10 marks]
ii. Modify the definition of C[[z : = a] to take account of the changes in the defini-
tion of A[a]. [5 marks]
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3. The axiomatic semantics of IMP is summarised in Appendix B. The following program
sets the variable x to the value of 2¥:

X o= Log

while not{y = 0}
do

X = 2 ¥ x
yor=y = 1

(a) Give a suitable precondition and postcondition to specify that the program sets x to
the value of 27, [5 marks]

(b) Give a suitable invariant for the loop, which will allow you to prove the correctness
of the program with respect to the pre- and post-conditions you gave in part (a).
[10 marks]

(c) Give a proof of the correctness of the program in the annotated-program style.
[10 marks]

4. The OBJ semantics of a simple imperative language is given in Appendix C.

(a) Give an OBJ proof script that shows that the following program sets * Z to the square

of "X+ Y:
P2 o= X + 'Y ;
'X = 'R * X ;
PY o= PR OE LY ;
'Z 1= ‘X 4+ °Y
[8 marks]
(b) Do the reduction in your answer to part (a) by hand. [12 marks]

(¢) What property of multiplication and addition is needed for the proof to work? Express
this property as an OBJ equation.
[5 marks]
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5. (a) Give a constructive proof and proof-witness of
(ANC=>B=0=A=18.

[9 marks]

(b) Give a constructive proof and proof-witness of
AN(A=B)=B.

[9 marks]

(c) Replacing C' with A = B in the proposition in part (a) allows us to apply the proof-
witness from part (a) to the proof-witness from part (b), giving a A-term that is a
proof-witness of

PN o

Reduce this A-term as far as possible. [7 marks]
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Appendix A: Syntax and Semantics of IMP

Syntax of IMP

(Aexp) ::= (Num} | (Loc) | {Rexp) + (Aexp)
| (Bexp) - (Bexp) | (Rexp) * (Aexp)

(Bexp) ::= true | false | {Rexp) = (RAexp} | (Rexp) < (Aexp)
| (Bexp) and (Bexp) | (Bexp) or (Bexp) | not (Bexp)

(Com) ::= skip | (Loc) := (Aexp) | (Com} ; {Com)
| if (Bexp) then (Com) else (Com)
| while (Bexp) do (Com)

Summary of the Operational Semantics

Operational semantics of programs:

e (skip, s) — &' if and only if s = &'

If (a,s) =+ nthen (z : = g, s) = s[n/z]

If (¢, 8) — &' and (cp, s") — " then (¢; ; ca,5) — 8"

If (b, 8) — true and (¢;,s) —+ &' then (1£bthene; elsecy,s) —+ &'

If (b,s) — false and (co, 5) — &' then (if bthenc) elsecy,s) — '

If (b, s) — false then (whilebdoe, 8) — s

If (b, s) —+ true and (¢, s) — s’ and (whilebdoc,s') — "
then (whilebdoe, s) = s"

Summary of the Denotational Semantics
o Afn](s) =n
o Alz](s) = s(z)
o Ala, + a2]J(s) = Afa:] + Afaz]
o Ala; - a2])(s) = Afa:]] — Alaz]
o Afar * az]l(s) = Afai1] * Afas]
o Bltrue](s) = true
e B[false](s) = false
e Bla; = as](s) = v, where v = true if Afa,](s) = Afaz](s), and v = false otherwise

PAPER CODE COMP317 page 6 of 10 Continued



THE UNIVERSITY
of LIVERPOOL

e B[a; < az](s) = v, where v = true if Afa;](s) < Afaz](s), and v = false otherwise
¢ B[not b](s) = —~ B[b](s)

e B[b, and bo](s) = Blbi]|(s) A B[b:](s)

o Bb, or b](s) = Blb](s) v Blb:](s)

e C[skip](s) = s

o Clx :=d](s) = s[n/z]

® Cler 5 e2](s) = Cllea](Cea]l(s))

o If B[b](s) = true then C[if b then ¢; else ¢3] = C[cy](s)

o If B[b](s) = faise then C[if b then ¢; else co] = Clle2](s)

o If B[b](s) = false then C[while b do c] = s

e If B[b](s) = true then C[while b do ¢] = C[while b do c](C[c](s))
Appendix B: Hoare Logic
{A}skip{A}
{Ale/z]}z :=e {A}

{A}la{B} {B}ea{C}
{A}e s e {C}

A=A {A}c{B} B=5B
{A}e{B'}

{Anb} e {B} {AA-b}ce{B}
{A}ifbthenc, elsec; { B}

{Anb}e{A}
{A}whilebdoc{AA-b}
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Appendix C: OBJ Semantics

*** the programming language: expressions ***
obj EXP is pr ZZ
pr QID *{sort Id to Var)
gsort Exp.
subsorts Var Int < Exp

op _+_ : Exp Exp -> Exp [prec 10]

op _*_ : Exp Exp -> Exp [prec 8]

op -_ : Exp -> Exp

op _—-_ : Exp Exp -> Exp [prec 10]
endo

obj TST is pr EXP

sort Tst

subsort Bool < Tst

op _=<_: Exp.Exp -> Tst [prec 15]

op _<=_ : Exp Exp -> Tst [prec 15]

op _is_ : Exp Exp -> Tst [prec 15]

op not_ : Tst -> Tst [prec 1]

op _and_ : Tst Tst -> Tst [prec 20]

op _or_ : Tst Tst —> Tst [prec 25]
endo

*#% the programming language: basic programs ***
obi BPGM is pr TST

sort BPgm .

op _:=_ : Var Exp -> BPgm [prec 20]
endo
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*** gsemantics of basic programs ***
th STCRE is pr BPGM .

sort Store .

op initial : -> Store .

op _[[_]] : Store Exp -> Int [prec E5]

cp _[[_]] : Store Tst -> Bool [prec 65]

op _i_ : Store BPgm -> Store [prec 60]

var S5 : Store .

vars X1 ¥2 : Var .

var I : Int .

vars E1 EZ2 : Exp .

vars T1 T2 : Tst .

var B : Bool

eq initial [[X1]] = O .

eq 5 [[I]] = TI.

eq S [[- El]] = -(s[[El]]} .

egq S [[El - E2]] = (S[[E1l]]) - (SI[[E2]])

eq S [[El + E2]] = (S[[E11]1) + (S[[E2]])

eq S [[E1l * E2]] = (SI[[E1]1]) * (S[[E2]])

eg S [[B]] = B .

eq S [[El is E2]] = (S [[E1l]]) is (s [[E211)

eq S [[El <= E2]] = (S [[E1l]]) <= (8 [[E2]])

eq S [[El < E2]] = (8 [[E1]]1} < (5 [[E2]])

egq S [[not T1l]] = not(S [[T1l]])

eq S [[T1 and T2]] = (S [[T1]]) and (S [[T2]11])

eg S [[T1l or T2]] = (8 [[T1]1]]) or (8 [[T2]])

eq S ; X1 :=FE1 [[X1]] = 8 [[El])]

cgqg S XL = EL T[X2]] = 8 [[X%X2]] if X1 =/= X2
endth

*** extended programming language ***
obj PGM is pr BPGM .

sort Pgm .

gubsort BPgm < Pgm .

op skip : -> Pgm .

O i : Pgm Pgm -> Pgm [assoc prec 50]

op 1if_then_else_fi : Tst Pgm Pgm -> Pgm [prec 40]

op while_do_od : Tst Pgm -> Pgm [prec 40]
endo
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th SEM is pr PGM .

pr STORE .

sort EStore .

subsort Store < EStore

op _;_ : EStore Pgm -> EStore [prec 60]
var S5 : Store

var T : Tst

var Pl P2 : Pgm .

eq S ; skip = &8 .

eq S5 ; (Pl ; P2) = (5 ; Pl) ; P2

cg S ; if T then Pl else P2 fi = 8§ ; P1
if sS[[T]]

cg S ; if T then Pl else P2 fi = 5 ; P2

if not(sS[I[T]])

cq S5 ; while Tdo Pl od = (8 ; P1)
it S5[FT]]
cg S ; while T do PL od = 8

if not(S[[T]1]1}

endth
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; while T do Pl od

End



