
I COMP317 I DEPARTMENT: Computer Science

THE UNIVERSITY
a/LIVERPOOL

JANUARY 2005 EXAMINATIONS

Bachelor of Arts: Year 3

Bachelor of Engineering: Year 3
Bachelor of Science : Year 3

SEMANTICS OF PROGRAMMING LANGUAGES

TIME ALLOWED: '!\vo Hours and a Half

INSTRUCTIONS TO CANDIDATES

Answer four questions only.

If you attempt to answer more questions than the required number of questions (in any section),
the marks awarded for the excess questions will be discarded (starting with your lowest mark).

PAPER CODE COMP317 page 1 of 9 Continued

THE UNIVERSITY

of LIVERPOOL

1. The syntax and denotational semantics of a simple programming language are summarised
in Appendix A. Suppose we want to extend the syntax of arithmetic expressions with a
post-increment operator, to include expressions of the form V ++, where V is a variable
(i.e., of syntactic class (Var). In any state 8, the value of the expression V ++ is just the
value of V in 8, but evaluating the expression has the side-effect of updating the state so
that the value of V is incremented by 1.

(a) Give a BNF description of the syntax of arithmetic expressions that includes expres-
sions of the form V ++. [4 marks]

(b) In order to give a denotational semantics for arithmetic expressions with side-effects,

we need to change the type of the denotation function [E]Expfor arithmetic expres-
sions E, so that it returns both the value of the expression and the updated state. Le.,
we want to define a denotation function

[E]EXP: State --t Int x State

by induction on the form of arithmetic expressions E. For example, in the case E has
the form El +Ez, we define:

[El + EZ]Exp(8) = (nl + nz, 8z)

where (nI, 81) = [El]Exp(8)
and (nz, 8z) = [EZ]Exp(8l).

This says first evaluate the leftmost expression El, giving the integer value nl and
updated state 81, then evaluate Ez in that updated state, giving integer value nz and
updated state 8z; the value of the expression is nl + nz, and evaluation has the side
effect of updating the state to 8z.

i. Complete the inductive definition of [E]EXp'including the case where Eis ofthe
form V ++. [10 marks]

ii. Modify the definitionof [V : = E]pgrnto take account of the changes in the
definition of [E]EXP' [6 marks]

iii. What other changes would need to be made to the denotational semantics of the
language? [5 marks]

2. Give definitions for each of the following:

(a) Signature

(b) L;-algebra

(c) Term algebra.

(d) Equational theory.

(e) Model of an equational theory.

(f) Initial model of an equational theory.

[4 marks]

[4 marks]

[4 marks]

[4 marks]

[4 marks]

[5 marks]

PAPER CODE COMP317 page 2 of 9 Continued

THE UNIVERSITY

afLIVERPOOL

3. (a) Say what is meant by 'term-rewriting'. [10 marks]

(b) Say why term-rewriting is sound with respect to equational satisfaction. [15 marks]

4. The following OBJ specification defines the factorial function on integers.

obj FACTORIAL is
pr ZZ .

op fac : Int -> Int .

var I : Int .

cq
cq

endo

factI)
factI)

= 1

I * factI - 1)

if
if

I <= 0 .

I > 0 .=

The following program sets the variable' x to the factorial of the value stored in 'y:

'x := 1 i
'count := 0 i

while 'count < 'y
do

'count := 'count + 1 i
'x := 'count * 'x

od

(a) Write an OBJ module that gives pre- and post-conditions that state that the program
sets' x to the factorial of the value initially stored in 'y. [8 marks]

(b) Give an invariant that will allow you to prove the partial correctness of the program.
[8 marks]

(c) Give an OBJ proof score that proves the partial correctness ofthe program. [9 marks]

PAPER CODE COMP317 page 3 of 9 Continued

THE UNIVERSITY

afLIVERPOOL

5. An abstract data type of pairs of integers is given in the following OBJ specification:

obj PAIR is
pr ZZ .

sort Pair.

op <_I_> : Int Int -> Pair.
ops (fst_) (snd_) : Pair -> Int .

vars I J : Int .

eq
eq

fst < I , J >

snd < I , J' >

= I .

J .=

endo

We want to extend the programming language described in Appendix B with a data type
of pairs, so that we can write programs such as the following:

q := < 1 , 2 > ; (p).l := (q).2 ; (p).2 := (q).l

where p and q are variables of the programming language, (_)-.1 and (-) .2 refer to the
first and second components of a pair, <El, E2> represents a pair whose first component
is the value of the integer expression El and whose second component is the value of the
integer expression E2, and the overloaded operator _: =- allows assignments either to a
'pair variable' such as p or q, or to a component of a pair variable. This program sets
q to a pair whose first component is 1 and whose second component is 2, then sets the
first component of p to the second component of q (i.e., the value 2), and finally sets the
second component of p to the first component of q. After the program has run, q has the
value <1, 2> and p has the value <2, 1>.

(a) Specify the syntax of the extended language by completing the following OBJ spec-
ification with subsort and operator declarations (one of the overloaded assignment
operators has been declared for you).

PAPER CODE COMP317 page 4 of 9 Continued

THE UNIVERSITY

Qf LIVERPOOL

obj PAIR-PROGRAMS is ex PGM .

*** Variables of the programming language:
sort PairVar .

ops p q : -> PairVar .

*** First and second components of pairs:
sort PairComponent .

*** Expressions of type Pair:
sort PairExp .

*** Subsort declarations:

*** Operations of the language:
op _:=- : PairComponent Exp -> BPgm .

endo

[7 marks]

(b) The semantics of the extended language can be specified by overloading the operator
- [[-]] as in the following OBJ module:

th PAIR-SEMANTICS is pr SEM .
pr PAIR.
pr PAIR-PROGRAMS.

op - [[-]] : Store PairExp -> Pair.

endth

Define the semantics of the extended language by giving suitable equations to include
in PAIR-SEMANTICS. [12 marks]

(c) Use the equations in your answer to part (b) to simplify the following term:

(s i q := <1,2> i (p).l := (q).2 i (p).2 := (q).l)[[p]]

[6 marks]for a given Store s.

PAPER CODE COMP317 page 5 of 9 Continued

THE UNIVERSITY

of LIVERPOOL

Appendix A: The Language and its Semantics

Syntax

(Exp) :: = (Num) I (Var) I (Exp) + (Exp) I (Exp) - (Exp) I (Exp) * (Exp)

(Tst) :: = true I false I (Exp) is (Exp) I (EXp)' < (Exp)
I (Tst) and (Tst) I (Tst) or (Tst) I not (Tst)

(pgm) :: = skip I (Var) : = (Exp) I (pgm) ; (pgm)
I if (Tst) then (pgm) else (pgm) fi
I while (Tst) do (pgm) od

Summary of the Denotational Semantics

. [N]EXP(S) = N

. [V]EXp(S)= S(V)

. [El + E2]Exp(S) = [El]Exp(S)+ [E2]EXp(S)

. [El - E2]EXp(S) = [El]EXp(S) - [E2]Exp(S)

. [El * EdExp(S) = [El]EXP(S) * [E2]EXp(S)

. [true]Tst(S) = true

. [false]Tst(S) = false

. [El is E2]Tst(S) = v, where v = true if [El]EXP(S)- [E2]Exp(S), and v = false
otherwise

. [El < E2]Tst(S) = v, where v - true if [EdEXP(S) < [E2]Exp(S),and v = false
otherwise

. [not T]Tst(S) = -, [T]Tst(S)

. [Tl and T2]Tst(S)= [Tl]Tst(S)A [T2]Tst(S)

. [Tl or T2]Tst(S)= [Tlhst(S) V [T2]Tst(S)

. [skiP]pgm(S)= S

. [X : = E]Pgm(S)= S[X +- [E]Exp(S)]

. [Pl ; P2]Pgm(S) = [P2]pgm([Pl]pgm(S))

. If [T]Tst(S) = true then [if T then Pl else P2 fi]pgm = [Pl]pgm(S)

. If [T]Tst(S) = false then [if T then Pl else P2 fi]Pgm = [P2]pgm(S)

PAPER CODE COMP317 page 6 of 9 Continued

THE UNIVERSITY

a/LIVERPOOL

. If [T]Tst(S)= false then [while T do P od]Pgm(S) = S

. If [T]Tst(S) = true then [while T do P od]pgm = [while T do P od]pgm([P]pgm(S))

Appendix B: OBJ Semantics

*** the programming language: expressions ***
obj EXP is pr ZZ 0

pr QID *(sort Id to Var)

sort Expo

subsorts Var Int < Exp 0

op -+- : Exp Exp -> Exp [prec 10]

op -*- : Exp Exp -> Exp [prec 8]

op -- : Exp -> Exp

op --- : Exp Exp -> Exp [prec 10]
endo

obj TST is pr EXP .
sort Tst 0

subsort Bool < Tst 0

op -<_: Exp Exp -> Tst [prec 15]
op -<=_: Exp Exp -> Tst [prec 15]
op _is_: Exp Exp -> Tst [prec 15]
op not_: Tst -> Tst [prec 1]
op _and_: Tst Tst -> Tst [prec 20]
op _or_: Tst Tst -> Tst [prec 25]

endo

*** the programming language: basic programs ***
obj BPGM is pr TST 0

sort BPgm.
op _:=- : Var Exp -> BPgm [prec 20]

endo

PAPER CODE COMP317 page 7 of9 Continued

THE UNIVERSITY

of LIVERPOOL

*** semantics of basic programs ***
th STORE is pr BPGM .

sort Store"

op -[[-]] : Store
op -[[-]] : Store
op -;- : Store
var S : Store"
vars Xl X2 : Var "
var I: Int .

vars El E2 : Exp .
vars Tl T2 : Tst .
var B : Bool .

Exp -> Int [prec 65]
Tst -> Bool [prec 65] ",
BPgm -> Store [prec 60]

eq S; Xl := El [[Xl]]
cq S ; Xl := El [[X2]]

endth

= S [[El]]

S [[X2]] Xl =/= X2 .if=

*** extended programming language ***
obj PGM is pr BPGM .

sort Pgm"
subsort BPgm < pgm .
op skip: -> pgm .
op -;- : pgm pgm -> pgm [assoc prec 50]
op if_then_else_fi : Tst pgm pgm -> Pgm [prec 40]
op while_do_od : Tst Pgm -> pgm [prec 40] .

endo

PAPER CODE COMP31? page 8 of 9 Continued

eq S [[I]] = I

eq S [[- El]] = -(S[[El]])
eq S [[El - E2]] = (S[[El]]) - (S[[E2]])

eq S [[El + E2]] = (S[[El]]) + (S[[E2]])

eq S [[El * E2]] = (S[[El]]) * (S[[E2]])

eq S [[B]] = B

eq S [[El is E2]] = (S [[El]]) is' (S [[E2]])

eq S [[El <= E2]] = (S [[El]]) <= (S [[E2.J])

eq S [[El < E2]] = (S [[El]]) < (S [[E2]])

eq S [[not Tl]] = not(S [[Tl]])
eq S [[Tl and T2]] = (S [[Tl]]) and (S [[T2]])
eq S [[Tl or T2]] = (S [[Tl]]) or (S [[T2]])

THE UNIVERSITY

of LIVERPOOL

th SEM is pr PGM .

pr STORE.
sort EStore .

subsort Store < EStore .

op _i_: EStore pgm -> EStore [prec 60]
var S : Store.

var T : Tst .

var Pl P2 : pgm .

eq S i skip = S
eq S i (Pl i P2) = (S i Pl) i P2 .
cq S i if T then Pl else P2 fi = S i Pl

if S[[T]] .

cq S i if T then Pl else P2 fi = S i P2

if not(S[[T]]).
cq S i while T do Plod = (S i Pl) i while T do Plod

if S [[T]] .

cq S i while T do Plod = S
if no t (S [[T]]) .

endth

PAPER CODE COMP31? page 9 of 9 End

