PAPER CODE NO.
COMP210

EXAMINER

: Dr. C. Dixon

DEPARTMENT: Computer Science Tel. No. 43674

SEPTEMBER 2002 EXAMINATIONS

Bachelor of Science: Year 2

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

TIME ALLOWED: Two Hours

INSTRUCTIONS TO CANDIDATES

SECTION A: Answer all 10 questions.

SECTION B: Credit will be given for the best 3 answers.

If you attempt to answer more questions than the required number of questions (in any section), the marks awarded for the excess questions will be discarded (starting with your lowest mark).

Section A

Each question is worth 4 marks:

- 1. In the context of propositional logic, what is meant by a well-formed formula? For propositional logic, give examples of a well-formed formula and a formula that is not well-formed.
- 2. The UnStack(x, y) action used in the STRIPS planner is given below.

UnStack(x, y)pre $On(x, y) \wedge Clear(x) \wedge ArmEmpty$ del $On(x, y) \wedge ArmEmpty$ add $Holding(x) \wedge Clear(y)$

In the blocks world with three blocks C, D, and E, explain how STRIPS would attempt to apply the action UnStack(C,D) to the state

 $On(C, D) \wedge ArmEmpty \wedge OnTable(D) \wedge Clear(E) \wedge Clear(C) \wedge OnTable(E)$ showing the resultant state.

- 3. What is meant by the thinking rationally view of Artificial Intelligence?
- 4. Draw a truth table for the expression $(p \land \neg q) \Rightarrow (p \lor q)$.
- 5. In the context of a rule-based system, what is working memory?
- 6. Describe how to perform a depth-first search.
- 7. What is an expert system shell?
- 8. Using an example (in Prolog) explain what is meant in Prolog by negation as failure.
- 9. Write in first-order logic
 - (a) Every dog has bitten a postman
 - (b) Some dog has bitten every postman
- 10. In the context of search problems what is a heuristic and how are heuristics used?

Section B

Answer 3 of the questions below. Each question is worth 20 marks.

1. Here is a simple puzzle.

A farmer has three dogs and 3 sheep that he wants to get across a river. He has a boat, which in addition to him, will hold one or two animals, but no more. If there are one or more sheep on a river bank, the farmer cannot leave more dogs than sheep on that river bank.

Let (s, d, k) indicate that there are s sheep, d dogs, and k boats on the original side of the river. The initial state is (3, 3, 1), goal state is (0, 0, 0).

- (a) Give the operations that may be performed during the solution to the problem. 6 marks
- (b) Write down the illegal states that result from the following statement in the problem. If there are one or more sheep on a river bank, the farmer cannot leave more dogs than sheep on that river bank.
 3 marks
- (c) Give a breadth first search to depth two for this problem.

7 marks

- (d) Give one advantage and one disadvantage of breadth-first search as compared to depth-first search. 4 marks
- 2. (a) A logic usually has a well defined *syntax*, *semantics* and *proof theory*. Explain what is meant by each of these. **6 marks**
 - (b) Give an interpretation which satisfies the following formula of propositional logic.

$$(p \lor q) \land (s \Rightarrow \neg r)$$

Show how this formula is evaluated using your interpretation.

5 marks

- (c) Briefly explain how the resolution proof method is carried out for deciding the validity of propositional logic formulae. 4 marks
- (d) Using resolution show that $p \Rightarrow (q \Rightarrow p)$ is valid.

5 marks

- (a) Give four desirable features of a knowledge representation scheme, briefly describing each feature.

 8 marks
 - (b) Describe the main features of a semantic network.

4 marks

(c) Show how the following statements can be encoded using a semantic network.

Sean is tall. Sean gives Clare a book.

4 marks

(d) Give two disadvantages of semantic networks.

4 marks

THE UNIVERSITY of LIVERPOOL

A small Prolog program is given below.

```
/************
parent (X, Y) holds if X is the parent of Y
***************
parent (christine, jonathan).
parent (christine, alison).
parent (christine, simon).
parent (peggy, christine).
parent (frank, christine).
parent (david, jonathan).
parent (david, simon).
parent (david, alison).
/****************
predecessor(X,Y)
X is the predecessor of Y if X is the parent of Y, or
X is the parent of Z and Z is the predecessor of Y
****************
predecessor(X,Y):- parent(X,Y).
predecessor(X,Y):-parent(X,Z),predecessor(Z,Y).
```

- (a) What does the query parent (david, Y). mean? Explain how Prolog answers the query, giving the output from Prolog if we keep asking for further solutions. Write a query to find all the parents of jonathan.
 6 marks
- (b) Write a rule defining grandparent (X, Y) where a grandparent is the parent of a parent.
 2 marks
- (c) Explain how Prolog answers the query predecessor (frank, alison). 4 marks
- (d) Explain the connection between Prolog and resolution. 3 marks
- (e) The predecessor rules can be written into first-order logic as the following two clauses.

$$predecessor(x, y) \lor \neg parent(x, y)$$

 $predecessor(x, y) \lor \neg parent(x, z) \lor \neg predecessor(z, y)$

Show using resolution that the parent predicate (from the Prolog program), the predecessor rules written into first-order logic (above) and the clause $\neg predecessor(frank, alison)$ are unsatisfiable. 5 marks