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INSTRUCTIONS TO CANDIDATES
Answer all questions in Section A and four questions only in Section B.
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Section A

Each question in this section is worth 4 marks. Answer all questions in this section.

1. For each of the following programming paradigms, name one example of a programming

o B

10.

language from that paradigm:

(a) the object-oriented paradigm
(b) the imperative paradigm

(c) the functional paradigm

(d) the logic paradigm

(i.e., name an object-oriented language, an imperative language, etc.).

Give three major characteristics of the imperative paradigm.
Give three major characteristics of the declarative paradigm.

Consider the following fragment of C code:

int *p, n=0;

P = &n;

printf("%d, ", ++(*p));
printf{"%d" . n++) ;

What would you expect the output to be?

What is an Abstract Data Type?

What is meant by ‘referential transparency’?

Why can goto-statements be considered harmful?

Consider the following Haskell definitions:

sumall [] = 0
sumhll (x:xs5) = x + sumaAll xs

Define an equivalent function to suma11 using foldl.
What are the potential benefits of enumerated types?

Consider the following Horn-clause declarations:

works (gregor,biscuit_factory).
works (joseph, car_plant) .
works (grace,biscuit_factory) .

colleague(X,¥Y) :- works(X,2), works(Y,Z).

Give all possible solutions to the query ?- colleague(A,B)?
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Section B

Each question in this section is worth 15 marks. Answer four questions from this section.

1. (a) What is the difference between a function and a procedure? [3 marks]
(b) Briefly describe the difference between a formal and an actual parameter. [3 marks]

(c) In Ada, what are the differences between in-parameters, out-parameters, and (in
out)-parameters? [4 marks]

(d) What is meant by ‘call by value’ parameter-passing, and how is it different from ‘call
by constant value’ parameter-passing? [5 marks]

2. Give C functions for each of the following operations on one-dimensional arrays; in each
case, the array (or arrays) and its length (or their lengths) should be formal parameters:

(a) Add 1 to each element in an array of integers [5 marks]

(b) Given an array of integers, return the array consisting of all elements less than 50.
[5S marks]

(c) Concatenate two arrays: for example, given an array with elements 1, 2 and 3, and
an array with elements 4 and 5, return the array with elements 1, 2, 3, 4 and 5.
[5 marks]

3. (a) The colours in a rainbow are: red, orange, yellow, green, blue, indigo and violet.
Give a set of data type definitions in C that would allow you to construct a linked list
of all the colours in a rainbow. [7 marks]

(b) Bearing in mind the advantages of functional decomposition, give C code that con-
structs a linked list containing all the colours of the rainbow, in the order given above.
[8 marks]

4. (a) What is meant by a partern in Haskell? [3 marks]

(b) What is pattern-matching? Illustrate your answer by saying whether the following
expressions match the pattemn (& : b @ x, ¢ : []):
e ( [(2,3), {(4,0)]. [1] )
e ( [2,3,4], [1,2] )
If the expression does match the pattern, say which subexpressions are matched to

the variables; if the expression does not match the pattern, explain what is different.
[7 marks]

(c) The following Haskell definition uses pattern-matching to define a function that adds
all the elements in a list of numbers:

sumAll [] = 0
sumall (x:xs) ¥ + sumhll ==

Give an equivalent definition that does not use pattern-matching but does use head
and tail. [5 marks]
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5. (a) Give a Haskell definition of a polymorphic data type BTree a of binary trees, where
a binary tree is either a ‘leaf” containing an element of the parameter type a, or a
‘fork’ consisting of two binary trees. [5 marks]

(b) Give a Haskell definition of a polymorphic map function that takes a function and a
binary tree, and returns the tree formed by applying the function to each leaf in the
tree. Include a type declaration of the function in your definition. [4 marks]

(c) Define a function BTreeFold that captures the general form of recursive functions

on binary trees (in the same way that £01d1 does for lists). The function should
have polymorphic type

(b -> b -> b) - {a -> b) -> (BTree a) -> b

[6 marks]

6. (a) Briefly indicate how the A-calculus can provide an operational semantics for Haskell
programs. [3 marks]

(b) What is meant by c-conversion in the A-calculus? [3 marks]

(c) What is meant by S-reduction in the A-calculus? [4 marks]

(d) Give a step-by-step reduction of the A-term

Ay-((Az-(Ay.(z y))) (Az.(z y)))

indicating whether each step is an instance of a-conversion or of A-reduction.
[5 marks]
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