Instruction to candidates

(time allowed 2 hours)

- candidates will be assessed on their best four answers
- if you attempt to answer more than the required number of questions, the marks awarded for the excess questions will be discarded (starting with your lowest mark)
- all logarithms are to the base 2

1.A What is a closed form of:

1. [5 marks]

$$\sum_{i=0}^{n} 2^{i} ?$$

2. [10 marks]

$$\sum_{i=0}^{n} \binom{n}{i} 2^{i} ?$$

Justify both of your answers.

1.B Prove that

$$\binom{n}{k} \ge \binom{n-1}{k},$$

for any $n \ge 1$ and $0 \ge k \ge n$. For what value of k does the equality $\binom{n}{k} = \binom{n-1}{k}$ hold.

[10 marks]

2.A Prove, using mathematical induction, that $T(n) = 3^n - 1$, where value T(n) is defined by the recurrence:

$$T(n) = \begin{cases} 2 & \text{for } n = 1, \\ 3T(n-1) + 2 & \text{for } n > 1, \end{cases}$$

[15 marks]

2.B Is the function f(x) = x+1 bijective when the domain and the codomain are **N**? Is it bijective when the domain and the codomain are **Z**?

Justify your answers.

[10 marks]

- **3.A** Design and write pseudocode finding a maximum and a second maximum element in array A[1, ..., n] of real numbers. The pseudocode should report both extremal values. What is the complexity of your solution? [15 marks]
- **3.B** In each case, which function is larger for almost all n (i.e. which function has higher order):

$$n^{\frac{2000}{2001}} \qquad \frac{n}{\sqrt{\log(n)}}$$

(ii)
$$\log(n^{2001})$$
 $n^{\frac{1}{2001}}$

(iii)
$$n^{\log(n)}$$
 $2^{2001\log(n)}$

[6 marks]

3.C What is the value of:

$$\log^*(128)$$

[2 marks]

3.D Which exact complexity is better for realistic values of parameter n,

2001
$$or \log(n)$$
?

Justify briefly your answer.

[2 marks]

4.A Prove that

$$3n^3 + 4n = \Theta(n^3).$$

[15 marks]

4.B List all 3-combinations of set $S = \{A, B, C, D, E\}$. Is the number of all 2-combinations of S larger than the number of all 3-combinations?

[4 marks]

4.C List three different sorting algorithms and comment on their worst case complexities. [6 marks]

5.A Consider the following directed graph G_1 :

Explain why graph G₁ isn't strongly connected.
Propose one edge to make G₁ strongly connected.
What is the in-degree and what is the out-degree of node 2? [2 marks]
What is the shortest directed path from node 1 to 6?
marks
What is the longest simple path in G₁?
marks

5.B Consider the following (undirected) graph G_2 :

1. Draw any spanning tree in G_2 .	[5 marks]
2. How many edges are missing to make G_2 complete?	[2 marks]
3. What is a diameter of G_2 ?	[2 marks]
4. What is the minimum and the maximum degree of G_2 ?	[2 marks]
5. What is the longest simple path between nodes 1 and 6?	[2 marks]
6. Is G_2 planar?	[2 marks]

- **1.A** (1) We use the fact that $\sum_{i=0}^{n} x^i = \frac{x^{n+1}-1}{x-1}$. When we plug in x=2 we get $\frac{2^{n+1}-1}{2-1} = 2^{n+1}-1$. Thus $\sum_{i=0}^{n} 2^i = 2^{n+1}-1$.
- (2) We use the fact that $(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i \cdot y^{n-i}$. When we plug in x=2 and y=1 we get $(2+1)^n = \sum_{i=0}^n \binom{n}{i} 2^i \cdot 1^{n-i} = \sum_{i=0}^n \binom{n}{i} 2^i$. Thus $\sum_{i=0}^n \binom{n}{i} 2^i = 3^n$.
- **1.B** We know (e.g. from the definition of Pascal's Triangle) that $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$. Since all binomial coefficients are non-negative so $\binom{n-1}{k-1}$ is non-negative too. This implies that $\binom{n}{k} \geq \binom{n-1}{k}$. It remains to check when $\binom{n}{k} = \binom{n-1}{k}$. We use the fact that $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$. And indeed we start with

$$\frac{n!}{k! \cdot (n-k)!} = \frac{(n-1)!}{k! \cdot (n-k-1)!},$$

we divide both sides by $\frac{(n-1)!}{k!\cdot(n-k-1)!}$ and we get

$$\frac{n}{n-k} = 1.$$

This is possible only when the parameter k = 0.

- **2.A** The prove that property (*) $T(n) = 3^n 1$ holds is performed in two steps.
 - 1. (Basis) Initially we prove that property (*) holds for small integer $n_0 = 1$. And indeed T(1) = 2 from the definition of T, since $3^{n_0} 1 = 3 1 = 2$.
 - 2. (Inductive step) In what follows we assume that property (*) holds for all integers from range $n_0, \ldots, n-1$. We prove now, using the definition of T and inductive assumption that (*) holds for value n-1, that property (*) holds also for value n. And indeed

$$T(n) = 3T(n-1) + 2 = 3 \cdot (3^{n-1} - 1) + 2 = 3^n - 3 + 2 = 3^n - 1.$$

Using induction we proved that property (*) holds for all integers.

2.B Function f is bijective if it is both injective (distinct arguments to f produce distinct values) and surjective (range of f is equal to its codomain). It is relatively easy to prove that function f is injective. And indeed for any two distinct arguments $x \neq y$ the following holds $f(x) = x+1 \neq y+1 = f(y)$. It remains to check whether function f is surjective in any of the two cases.

Case 1 Domain and codomain are $\mathbf{N} = \{0, 1, 2, 3, ...\}$. In this case the range of f is equal to $\{1, 2, 3, ...\}$ since there isn't any natural number x, s.t. f(x) = x + 1 = 0. Thus function f isn't surjective as well as bijective when its domain and codomain are \mathbf{N} .

Case 2 Domain and codomain are $\mathbf{Z} = \{.., -2, -1, 0, 1, 2, 3, ..\}$. In this case the range of f is equal to its codomain \mathbf{Z} since for any $x \in \mathbf{Z}$, there exist y = x - 1, s.t. f(y) = x. Thus function f is surjective as well as bijective when its domain and codomain are \mathbf{Z} .

3.A

#times cost $max1 \leftarrow MAX(A[1], A[2]); max2 \leftarrow MIN(A[1], A[2]);$ 1 c_1 for $i \leftarrow 3$ to n do n-1 c_2 n-2if A[i] > max1 c_3 $\leq n-1$ then $max2 \leftarrow max1; max1 \leftarrow A[i];$ c_4 else if A[i] > max2 then $max2 \leftarrow A[i]$; < n - 1 c_5 $\triangleright max1$ contains a maximum value and \triangleright max contains a second maximum value.

. . .

The total cost of the solution is bounded by:

$$(c_2 + c_3 + c_4 + c_5)n + c_1 - c_3 - c_4 - c_5 = O(n).$$

3.B (i)
$$n^{\frac{2000}{2001}} < \frac{n}{\sqrt{\log n}}$$
, (ii) $\log(n^{2001}) < n^{\frac{1}{2001}}$, (iii) $n^{\log n} > 2^{2001 \log n}$.

3.C
$$\log^*(128) = 4$$
, since $2^{2^2} = 16$ and $2^{2^{2^2}} > 128$.

3.D $2001 > \log(n)$ for all realistic values of n, since inequality holds for all $n < 2^{2001}$ which is much larger then the number of all atoms in the solar system.

4.A We start with prove that $3n^3 + 4n = O(n^3)$. We have to show that there is a constant c > 0 and integer n_0 , s.t. $0 \le 3n^3 + 4n \le cn^3$, for all integer $n \ge n_0$. The inequality holds when $n^2(c-3) \ge 4$ and equivalently $n \ge \sqrt{\frac{4}{c-3}}$. If we take c = 4 the inequality holds for all $n \ge 2$, thus we can take $n_0 = 2$.

Later we prove that $3n^3 + 4n = \Omega(n^2)$. We have to show that there is a constant c > 0 and integer n_0 , s.t. $0 \le cn^3 \le 3n^2 + 4n$, for all integer $n \ge n_0$. And indeed if we take c = 1 we get $n^3 \le 3n^3 + 4n$, which is true for any integer $n \ge 1$. Thus in this case c = 1 and $n_0 = 1$.

Finally since $3n^3 + 4n = O(n^3)$ and $3n^3 + 4n = \Omega(n^3)$ we get $3n^3 + 4n = \Theta(n^3)$.

4.B The 3-combination (listed in lexicographical order) of set $\mathcal{S} = \{A, B, C, D, E\}$ are: $\{A, B, C\}, \{A, B, D\}, \{A, B, E\}, \{A, C, D\}, \{A, C, E\}, \{A, D, E\}, \{B, C, D\}, \{B, C, E\}, \{B, D, E\},$ and $\{C, D, E\}$. There are exactly the same number of 2-combinations and 3-combinations in this case due to the symmetry of a binomial coefficient, i.e. $\binom{n}{k} = \binom{n}{n-k}$, where n = 5 and k = 3.

4.C Three sorting algorithms:

- 1. Bubble-sort, its worst case complexity is $O(n^2)$, since it can remove only one inversion at a time,
- 2. Insertion-sort, its worst time complexity is $O(n^2)$, it happens when the input is sorted in reverse order,
- 3. Merge-sort, its complexity is $\Theta(n \log n)$, and it doesn't depend on the input data.

5.A

- 1. Out-degree of node 4 is 0,
- 2. any out-going edge from node 6, e.g. $4 \rightarrow 5$,
- 3. in-degree is 2, and out-degree is 1,
- 4. the shortest path is of length 3: $1 \rightarrow 2 \rightarrow 5 \rightarrow 6$
- 5. longest directed simple path has length 5, $5 \rightarrow 6 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$.

5.B

1. Example of a spanning tree:

- 2. $\frac{6.5}{2} 9 = 6$, missing edges: 1 3, 1 4, 2 6, 3 5, 3 6, 4 6,
- 3. the diameter of G_2 is 3 (use a route along a perimeter).
- 4. the minimum degree is 2 (nodes 3 and 6) and the maximum degree is 4 (nodes 2 and 5),
- 5. the longest simple path between nodes 1 and 6 is of length 5, see 1-5-2-4-3-6, and it cannot be longer since we would have a cycle.
- 6. G_2 is planar since it can be placed on a plane, such that its edges do not cross each other.