Instruction to candidates

(time allowed 2 hours)

- candidates will be assessed on their best four answers,
- if you attempt to answer more than the required number of questions, the marks awarded for the excess questions will be discarded (starting with your lowest mark),
- all logarithms are to the base 2.

1.A Prove that:

$$19 < \frac{\binom{2000}{100}}{\binom{2000}{99}} < 20$$

[10 marks]

Is it true that:

$$\binom{2000}{100} < \binom{2000}{1900} ?$$

Jutify your answer.

[5 marks]

1.B For which values of $0 \le k \le n$ is

$$\binom{n}{k-1} \ge \binom{n}{k} ?$$

Which value among $\binom{n}{0}$, $\binom{n}{1}$, $\binom{n}{2}$, ..., $\binom{n}{n-1}$, $\binom{n}{n}$ is the largest?

[10 marks]

2.A Prove, using mathematical induction, that, for $n \ge 1$ $T(n) = \frac{4^n-1}{3}$, where value T(n) is defined by the recurrence:

$$T(n) = \begin{cases} 1 & \text{for } n = 1, \\ 4T(n-1) + 1 & \text{for } n > 1, \end{cases}$$

[15 marks]

2.B What is the value of:

$$\sum_{k=1}^{n} (3k+5) ?$$

Justify your answer.

[10 marks]

- **3.A** Design and write a pseudocode finding positions of a *minimum* and a maximum element in array A[1, ..., n] of real numbers. The pseudocode should report both extremal values. What is the time complexity of your solution? [15 marks]
- **3.B** State, in each of the three cases, which function is larger for almost all n (i.e. which function has higher order):

(i)
$$n^{\frac{2000}{1999}} n \log(n)$$
 (ii) $\log^{2000}(n) n$ (iii) $n^{\log(n)} 2^{2000 \log(n)}$ [6 marks]

3.C What is the value of

$$\log^*(2000)$$
 ?

[2 marks]

3.D Which exact complexity is better for realistic values of parameter n,

$$2000 \quad or \quad \log(n)$$
?

Briefly justify your answer.

[2 marks]

4.A Prove that

$$3n^2 + 2 = O(n^2).$$

[15 marks]

4.B List all 2-element combinations of the set $\{w, x, y, z\}$.

[4 marks]

 ${\bf 4.C}$ List three properties of free trees.

[6 marks]

5.A Consider the following directed graph G_1 :

- Explain why graph G₁ isn't strongly connected.
 Propose one edge to make G₁ strongly connected.
 What are the in-degree and out-degree of node 5?
 What is the shortest directed path from node 1 to 4?
 What is the longest simple path in G₁?
 marks
 marks
 marks
- **5.B** Consider the following (undirected) graph G_2 :

1. Draw any spanning tree in G_2 . [5 marks]
2. How many edges are missing to make G_2 complete? [2 marks]
3. What is a diameter of G_2 ? [2 marks]
4. What is the minimum and the maximum degree of G_2 ? [2 marks]
5. What is the longest simple path between nodes 1 and 6? [2 marks]
6. Is G_2 planar? [2 marks]

1.A We use the fact that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. And indeed:

$$\frac{\binom{2000}{100}}{\binom{2000}{99}} = \frac{\frac{2000!}{100! \cdot 1900!}}{\frac{2000!}{99! \cdot 1901!}} = \frac{2000! \cdot 99! \cdot 1901!}{100! \cdot 1900! \cdot 2000!} = \frac{1901}{100} = 19.01$$

The answer to the second question is NO. We use the fact that $\binom{n}{k} = \binom{n}{n-k}$, where n = 2000 and k = 100.

1.B We know that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Thus we have to answer for which values of $0 \le k \le n$ the following holds

$$\frac{n!}{(k-1)!(n-k+1)!} \le \frac{n!}{k!(n-k)!}.$$

Dividing both sides of above inequality by $\frac{n!}{(k-1)!(n-k)!}$ we get

$$\frac{1}{n-k+1} \le \frac{1}{k},$$

which is equivalent to

$$k < n - k + 1.$$

And this holds when $2k \leq n+1$, and finally $k \leq \frac{n+1}{2}$. Using that fact we conclude that value $\binom{n}{k}$ is the largest for $k = \lfloor \frac{n+1}{2} \rfloor$.

- **2.A** The proof that property (*) $T(n) = \frac{4^{n}-1}{3}$ holds is performed in two steps.
 - 1. (Basis) Initially we prove that property (*) holds for small integer $n_0 = 1$. And indeed T(1) = 1 from the definition of T, and $\frac{4^{n_0}-1}{3} = \frac{4-1}{3} = 1$.
 - 2. (Inductive step) In what follows we assume that property (*) holds for all integers from range $n_0, \ldots, n-1$. We prove now, using the definition of T and inductive assumption that (*) holds for value n-1, that property (*) holds also for value n. And indeed

$$T(n) = 4T(n-1) + 1 = 4 \cdot \frac{4^{n-1} - 1}{3} + 1 = \frac{4^n - 4 + 3}{3} = \frac{4^n - 1}{3}.$$

Using induction we proved that property (*) holds for all integers ≥ 1 .

2.B We use the *linearity property* of a summation and the known fact that the sum of the initial n integers is $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$. Thus

$$\sum_{k=1}^{n} (3k+5) = 3 \cdot \sum_{k=1}^{n} k + \sum_{k=1}^{n} 5 = 3 \cdot \frac{n(n+1)}{2} + n \cdot 5 = \frac{3}{2}n \cdot (n+1) + 5n.$$

3.A

	cost	#times
$min_pos \leftarrow max_pos \leftarrow 1;$	c_1	1
for $i \leftarrow 2$ to n do	c_2	n
$\mathbf{if}\ A[min_pos] > A[i]$	c_3	n-1
then $min_pos \leftarrow i$	c_4	$\leq n-1$
else if $A[max_pos] < A[i]$ then $max_pos \leftarrow i$;	c_5	$\leq n-1$
$\triangleright A[min_pos]$ contains a minimum value and		
$\triangleright A[max_pos]$ contains a maximum value.		
•••		

The total cost of the solutuion is bounded by:

$$(c_2 + c_3 + c_4 + c_5)n + c_1 - c_3 - c_4 - c_5 = O(n).$$

3.B (i)
$$n^{\frac{2000}{1999}} > n \log(n)$$
, (ii) $\log^{2000}(n) < n$, (iii) $n^{\log n} > 2^{2000 \log n}$.

3.C
$$\log^*(200) = 4$$
, since $2^{2^2} = 16 < 2000$ and $2^{2^{2^2}} \ge 2000$.

3.D $2000 > \log(n)$ for all realistic values of n, since inequality holds for all $n < 2^{2000}$ which is much larger then the number of atoms in the solar system.

4.A We have to show that there is a constant c > 0 and integer n_0 , s.t. $0 \le 3n^2 + 2 \le cn^2$, for all integer $n \ge n_0$. The inequality holds when $n^2(c-3) \ge 2$ and equivalently $n \ge \sqrt{\frac{2}{c-3}}$. If we take c = 5 the inequality holds for all $n \ge 1$, thus we can take $n_0 = 1$.

4.B $\{w, x\}$, $\{w, y\}$, $\{w, z\}$, $\{x, y\}$, $\{x, z\}$, and $\{y, z\}$.

- **4.C** A free tree T = (V, E) has the following properties:
 - 1. T is connected, and |E| = |V| 1,
 - $2.\ T$ is connected, and has no cycle,
 - 3. there is a unique path in T between any two nodes.

5.A

- 1. Out-degree of node 4 is 0,
- 2. any out-going edge from node 4, e.g. $6 \rightarrow 3$,
- 3. in-degree is 2, and out-degree is 3,
- 4. there are two shortest paths: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ and $1 \rightarrow 2 \rightarrow 5 \rightarrow 4$,
- 5. the longest directed simple path has length 5, e.g. $6 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 4$.

5.B

1. Example of a spanning tree:

- 2. $\frac{6.5}{2} 9 = 6$, missing edges: 1 2, 1 6, 3 5, 4 5, 4 6, 5 6,
- 3. the diameter of G_2 is 2, any node can be reached via node 5
- 4. the minimum degree is 2 (nodes 4 and 6) and the maximum degree is 5 (node 5),
- 5. the longest simple path between nodes 1 and 6 is of length 5, see 1-2-3-4-5-6, and it cannot be longer since we would have a cycle.
- 6. G_2 is planar since it can be placed on a plane, such that its edges do not cross each other.