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(@)

(b)

(©)

(d)

(€)

Letx be ap-dimensional random vector with(z) = p andvar(xz) = X' = (oy5). Let
P = (pi;) be the correlation matrix of. Define the correlationg;; in terms of the
covariancesr;; and also write down a matrix equation definifgn terms of X’ and a
diagonal matrixA.

Use your matrix equation to show tHatis positive semi-definite. You should prove any
results about’ that you use.

Letx ~ N,(u,X). Write down expressions for the squared Euclidean, Pegaesuh
Mahalanobis distances betweeandy. Briefly explain the similarities and differences
between these distance measures.

Show that the squared Mahalanobis distance betwesmd 1. has axf, distribution.

Consider two random vectoss~ Ny(u,, 2) andy ~ N(u,, X) with densitiesf,(x)
and f,,(y) respectively. Given that, = [1,5]" andu, = [5,1]”, sketch the contours
of the densities of andy on one graph.

Let z be a finite mixture distribution with density

ful2) = 3 fol@) + 5 fuly)

Find E(z) and give the structure afir(z) (note that you do not have to find an explicit
form for var(z)). Use the structure ofar(z) to explain why the Mahalanobis distance
is generally a poor choice for use in hierarchical clustedysis.

Find the change in the squared Euclidean, Pearson, ahdldebis distances between
x and p if the random vectore has distributionV, (i, k£X) instead of N, (e, X') for
some positive real constaht

Briefly explain how the result from part (b), that the Migmebis distance between
andu has axf) distribution, can be used to detect outliers in a sample tf.da

The table below presents data, . .., x3, on the thickness of cork bark measured on
the north, east, south, and west sides of 30 trees, alongtwitisformed data data
Y1, ..., Y3 Wherey, = Az, with

1 -1 1 -1
A=1]11 0 -1 0
0 1 0 -1

Also tabulated are the Mahalanobis distantgéx,., ) betweene, andz, andd?, (y,., )
betweeny, andy, calculated using the sample variance matrices. Use thedeaM
lanobis distances to comment on any outliers in the origanal transformed data sets.
What effect has the transformation had?
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North East South West

(1)  (22) (x3) () d3(me, @) wa Y2 ys  d3(yr, )
59.5 553 735 59.7 18.3 18.0 -13.9 -4.3 9.2
70.4 552 724 541 17.0 335 -21 1.1 9.9
59.0 545 49.0 49.1 8.4 45 101 54 1.8
48.9 40.4 44.2 433 3.6 95 47 -29 2.8
42.2 418 354 324 6.4 34 6.8 9.5 0.9
704 654 649 53.6 12.7 16.3 54 11.8 3.8
37.6 33.0 357 315 7.7 89 19 1.5 0.4
453 444 401 37.7 3.1 3.3 51 6.7 0.2
33.0 378 32.1 33.0 10.7 5.7 0.8 4.8 2.5
59.1 529 59.3 59.1 8.4 6.4 -02 -6.2 2.6
40.1 35.8 38.0 421 5.1 0.2 21 -6.3 3.0
454 452 475 51.3 12.1 -35 -21 -6.1 3.6
495 409 529 485 4.4 13.0 -34 -7.6 3.8
46.1 456 43.0 355 7.7 8.1 3.1 101 1.6
31.7 347 195 225 15.1 -6.0 12.2 12.2 2.9
453 38.7 544 47.0 10.1 140 -9.1 -8.2 5.6
47.1 414 376 432 8.0 01 95 -17 3.8
59.7 53.8 609 50.3 2.8 165 -1.1 3.5 1.9
53.3 51.0 544 518 4.1 49 -1.1 -0.8 0.8
49.8 416 453 418 3.0 11.7 44 -0.2 2.0
48.3 46.6 424 434 3.0 0.6 59 3.2 0.3
49.8 38.0 445 420 10.0 143 53 -4.0 5.5
65.3 58.2 644 56.1 3.3 154 0.9 2.1 1.5
60.3 524 66.8 58.0 5.2 16.8 -6.5 -5.6 4.1
68.1 575 70.2 559 6.5 249 -2.1 1.7 4.9
70.0 57.3 70.7 61.0 6.7 22.4 -0.7 -3.7 54
340 252 304 311 15.9 81 35 -59 3.8
55.8 45.1 546 56.1 11.0 9.2 12 -11.0 7.2
29.3 29.0 258 353 11.6 92 35 -6.3 4.8
73.8 626 61.4 58.7 20.5 13.9 124 4.0 7.4
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2. (a) Let{z,;r =1,...,n} be an independent sample from\g(p, ') distribution. Show

(b)

(€)

(d)

that the log-likelihood of the parametegusand X’ given the data matriX is

n

n 1
W, 1X) = =5 log| S| = 5 > (@ — )" 7 (@, — ) + C,

r=1

giving an explicit expression for for the constarit By writing (x, — p) as(x, — & +
& — p), show that the maximum likelihood estimategofs u = .

Consider testing?, : © = 0 againstH; : u # 0 with X' known. Show that the
likelihood ratio test statistia is equal to the the Mahalanobis distance betweand0
with respect ta¥'/n, i.e.

AN=nzl Xz,

and state its distribution undéf,.

Now consider a two sample problem with independent sesfpl,;» = 1,...,n,} and
{ys;s=1,...,n,} from N,(p,, X) andN,(u,, X) distributions respectively, wherg

is a known variance matrix common to the two distributions.

Letd = ¢ — y. Write down the distribution ofl. Construct a test statistic based on a
quadratic form involvingd and X' to testH,, : p, = p, againstt; : p, # p,. State the
distribution of this test statistic wheH, is true.

Explain briefly what changes are needed to the test stagisticts distribution undeH,
whenX is not known and must be estimated from the data.

Measurements of cranial length and breadth in millie®twere made on, = 14 male
andn, = 35 female frogs. Sample means and sums of squares matrices were

_[218 _ [229
~ [228]" Y = |2a4|
240 248 601 690
(e = 1)S: = [248 270}’ (ny = 1)Sy = [690 830]

Carry out a hypothesis test to determine whether male andléefrogs have signifi-
cantly different mean cranial measurements.

Regardless of whether you find a significant difference betwée two samples, con-
struct 95% simultaneous confidence intervals for the unibichnate vectors and inter-
pret your findings.
Hint You may find it useful to recall that thE? and F distributions are related by the
equation

mp

T*(p,m) = mF(%m —p+1).
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(a) Supposed is ap x p symmetric matrix with ordered distinct eigenvalugs > A\, >

(b)

(€)

(d)

-+ > \,. Leta; be the unit eigenvector corresponding\tdor ¢ = 1, ..., n. Show that
x; andx; are orthogonal if # ;.

Prove that4 can be written ast = I'AT'" wherel is an orthogonal matrix and is
a diagonal matrix. Show how and A can be constructed from the eigenvalues and
eigenvectors ofl.

Let x be a random vector with mean vectarand variance matrix’, where X' has
spectral decompositiod’ = I'AI'". Write down an equation defining the principal
component transformation which transformsnto a new random vectay.

Find E(y) andvar(y), noting any special structure of the diagonal elementsuofy).
Given a data matrixX, explain how a sample principal component analysis can be
carried out. Why is this sample principal component analysieful in reducing the
effective dimension of the data?

(In your answer, you can use without proof the fact that”a is maximised over all
possible unit vectora whena is the eigenvector of’ corresponding to the largest
eigenvalue ofY. Any further results that you assume about variance maxitois
should be clearly stated but need not be proved.)

Show that the eigenvalues &f" X are also eigenvalues of X7, whereX is ann x p
data matrix. When does this imply that principal componeralgsis can be used in
place of multi-dimensional scaling, and why might we preateuse principal compo-
nents?

In a study of beef cattle, the length, height, girth, aetcpntage body fat of 150 Nor-
mandy cows were measured. A principal components analysiese data using the
correlation matrix inR gave the following output, whergt.bdy.ft " is the variable
“percentage of body fat”.

> summary(prc)
Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.388 1.006 0.920 0.462
Proportion of Variance 0.482 0.253 0.212 0.053
Cumulative Proportion 0.482  0.735  0.947 1.000

> |oadings(prc)

Loadings:
Comp.1 Comp.2 Comp.3 Comp.4
length 0.537 0.223 0.631 -0.513
girth 0.677 -0.037 0.034 0.743
height 0.498 -0.052 -0.753 -0.427

pc.bdy.fat -0.071 0.973 -0.183 0.123

Explain what information is given by this output. Suggestrarrpretation of the prin-
cipal components analysis. How might you use the above obut@uny further analysis
of the data?
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(@)

(b)

(€)

(d)

Suppose p-dimensional measurements, representecagdar vectore, can be made
on individuals from two populationd; andII, with probability density functiong; ()
and f,(x) respectively. Briefly distinguish between the situatiorigew cluster analysis
or discriminant analysis might be applied to data obtaimeohfthe two populations.

In discriminant analysis, the maximum likelihood alidion rule defines two regions,
R; andR; in RP. State how the pdfg, (x) and f(x) are used to defin®; andR,, and
explain how these regions are used to construct the altcatie.

Now assume that individuals frofb; follow a IV, (p;, 2) distribution fori = 1, 2. Show
that in this case the regiaR; is

Ry = {w = )T {w - %(“1 + Mﬂ} > 0} :

For the bivariate case, sketch a diagram showing how the sneam@and ., and the
contours of the density function§ (x) and f»(x) relate to the line separating; and
Rs.

The classification probabilities of the allocation rute(b) are defined to be;; =
P(z allocated td[;|x from11;), ¢, 7 = 1,2. Show that the misclassification probabili-
ties are given by, = ps; = ®(—A/2), whered is the cumulative distribution function
of a standard univariate normal add = (g1 — p2)7 X7 (g — o).

Suppose we have measurements on length and breath imetits of 50 human skulls
from pre-dynastic Egypt (population 1) and 50 skulls frormiRm-era Egypt (popula-
tion 2). The mean vectors and pooled covariance matrix are

o [134 o _ [128 g_[31
132 27 1136 1 o3|
Find the equation of the line dividingg; and R,, and use parametric substitution to

evaluate the misclassification probabilitigs andp,; . In a large sample of skulls, what
proportion would you expect to be misclassified?

If you were only able to use one of the variables (either Ieraytbreadth) to classify

skulls, which would you choose to minimise the number of tassifications? Why is

your chosen measurement likely to result in fewer miscfessskulls?

To which population would you assign a skull with height 13Bnbreadth 133mm?
Why can you not use your misclassification probabilitiesvabtm say how confident
you are in your classification of this skull?
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5. Given ann x n symmetric matrix of dissimilarities\ = (4,,), classical multidimensional
scaling is used to find am x p matrix X, where the Euclidean distances between the points
x,...,x, specified by the rows ok’ match the dissimilarities as closely as possible. The
classical multidimensional scaling solution is producgdHe following algorithm.

(i) ConstructA = (a,,) wherea,, = —367,.
(i) SetB = HAH,whereH = I, — %17115 is the centring matrix.
(iii) Take the spectral decompositidh = I'AI'" of B, wherel” andA are constructed
from the eigenvectors and eigenvaluedin the usual way.
(iv) Setl'y = [vay,--- .Y, 0,...,0] andA; = diag(X1,..., A, 0,...,0).

(v) Let X =AY

(&) Show thatA is a Euclidean distance matrix if and onlyif is positive semi-definite.
(Recall thatB is positive semi-definite i€” Be > 0 for all ¢ € R™.)

(b) A group of political science lecturers was asked to ast®s dissimilarities on a scale
of 1 (very similar) to 9 (very dissimilar) between certainlifoal leaders prominent at
the time of the second world war. The dissimilarity matrixaibed for (in order) Hitler,
Mussolini, Churchill, Roosevelt, Stalin, and Attlee is givby

027859
20 8889
78 0 3 5 8
A_883087
58 58 07
99 8770

Is it possible to construct a set of points which has Euchdg#iatance matrixA? How
many dimensions do you think would be best to represent thssrdilarity matrix? You
may find the following editedR output helpful (where\ is represented d3elta ).

A -0.5 =« Delta™2

>

> H diag(rep(1, 6)) - 1/6 * rep(l, 6) % =*% t(rep(1, 6))
>B=H %% A %% H
>
>

tmp = eigen(B)
round(tmp$values, 1)
[1] 63.8 37.4 31.5 0.0 -09 -5.8
> round(tmp$vectors, 2)

[1] [2] [3] [4] [5] [e]
Hitler 0.53 0.02 0.10 -0.41 0.52 0.53
Mussolini  0.56 -0.03 -0.44 -0.41 -0.46 -0.34
Churchill -0.26 -0.47 0.30 -0.41 -0.53 0.42
Roosevelt -0.39 -0.48 -0.33 -0.41 0.49 -0.33
Stalin 0.00 0.28 0.70 -0.41 0.06 -0.51
Attlee -0.44 0.69 -0.33 -0.41 -0.08 0.23

Construct a set of points in two-dimensional space repteggthese political leaders,
sketch a plot of these points, and interpret your plot.
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Nor mal Distribution Function Tables

The first table gives

0.4
|

1 x
<I>(x) = E/ 6_%t2dt

and this corresponds to the shaded area in the figure
to the right. ®(x) is the probability that a random
variable, normally distributed with zero mean and
unit variance, will be less than or equaltoWhen

x < 0used(z) =1— &(—x), as the normal dis-
tribution with mean zero is symmetric about zero.
To interpolate, use the formula

0.3

0.2

0.1

0.0
|

r — I

O(z) ~ P(x1) + (®(z2) — (1))

T2 — 1

Table1

0.00 0.5000 0.50 0.6915 1.00 0.8413 150 0.9332 2.00 0.9772 250 0.9938
0.05 0.5199 055 0.7088 1.05 0.8531 155 0.9394 2.05 0.9798 255 0.9946
0.10 0.5398 0.60 0.7257 1.10 0.8643 160 0.9452 210 0.9821 260 0.9953
0.15 0.5596 0.65 0.7422 115 0.8749 165 0.9505 215 0.9842 265 0.9960
020 0.5793 0.70 0.7580 1.20 0.8849 1.70 0.9554 220 0.9861 270 0.9965

025 0.5987 0.75 0.7734 125 0.8944 175 0.9599 225 0.9878 275 0.9970
030 0.6179 0.80 0.7881 1.30 0.9032 1.80 0.9641 2.30 0.9893 280 0.9974
0.35 0.6368 0.85 0.8023 1.35 0.9115 185 0.9678 2.35 0.9906 285 0.9978
040 0.6554 090 0.8159 140 0.9192 190 0.9713 240 0.9918 290 0.9981
045 0.6736 095 0.8289 145 0.9265 195 0.9744 245 0.9929 295 0.9984

050 0.6915 1.00 0.8413 150 0.9332 200 0.9772 250 0.9938 3.00 0.9987

The inverse functiord~!(p) is tabulated below for various values af

Table2

D 0900 0950 0975 0990 0995 0.999 0.9995
d~1(p) 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902 3.2905
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This table gives the percentage point§(P) for
various values of? and degrees of freedom as
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Per centage Points of the x2-Distribution

indicated by the figure to the right.

If X is a variable distributed ag? with v de-
grees of freedom,P/100 is the probability that

X > X2(P).
P/100
Forv > 100, v/2X is approximately normally dis-
tributed with mean/2v — 1 and unit variance. P
Percentage point®
v 10 5 2.5 1 0.5 0.1 0.05
1 2.706 3.841 5.024 6.635 7.879 10.828 12.116
2 4.605 5.991 7.378 9.210 10.597 13.816 15.202
3 6.251 7.815 9.348 11.345 12.838 16.266 17.730
4 7.779 9.488 11.143 13.277 14.860 18.467 19.997
5 9.236 11.070 12.833 15.086 16.750 20.515 22.105
6 | 10.645 12.592 14.449 16.812 18.548 22.458 24.103
7 | 12.017 14.067 16.013 18.475 20.278 24.322 26.018
8 | 13.362 15.507 17.535 20.090 21.955 26.124 27.868
9 | 14.684 16.919 19.023 21.666 23.589 27.877 29.666
10 | 15.987 18.307 20.483 23.209 25.188 29.588 31.420
11 | 17.275 19.675 21.920 24.725 26.757 31.264 33.137
12 | 18.549 21.026 23.337 26.217 28.300 32.909 34.821
13 | 19.812 22.362 24.736 27.688 29.819 34.528 36.478
14 | 21.064 23.685 26.119 29.141 31.319 36.123 38.109
15 | 22.307 24.996 27.488 30.578 32.801 37.697 39.719
16 | 23.542 26.296 28.845 32.000 34.267 39.252 41.308
17 | 24.769 27.587 30.191 33.409 35.718 40.790 42.879
18 | 25.989 28.869 31.526 34.805 37.156 42.312 44,434
19 | 27.204 30.144 32.852 36.191 38.582 43.820 45.973
20 | 28.412 31.410 34.170 37.566 39.997 45.315 47.498
25 | 34.382 37.652 40.646 44,314  46.928 52.620 54.947
30 | 40.256 43.773  46.979 50.892 53.672 59.703 62.162
40 | 51.805 55.758 59.342 63.691 66.766 73.402 76.095
50 | 63.167 67.505 71.420 76.154  79.490 86.661 89.561
80 | 96.578 101.879 106.629 112.329 116.321 124.839 128.261
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5 Per cent Points of the F'-Distribution

This table gives the percentage poifis ,, (P) for

P = 0.05 and degrees of freedom , v, as indi-
cated by the figure to the right.

The lower percentage points, that is the values
F/  (P) such that the probability that® <

vi,V2

F!, . (P)is equal toP/100, may be found using

vi,v2

the formula P/100
F1£1,V2(P):]‘/FV17V2(P) 0 F(P)
v

|28 1 2 3 4 5 6 12 24 fo%e)

2 | 18.513 19.000 19.164 19.247 19.296 19.330 19.413 19.45449409.

3 110.128 9552 9.277 9.117 9.013 8941 8.745 8.639 8.526
4 7709 6.944 6591 6.388 6.256 6.163 5.912 5774 5.628
5 6.608 5.786 5.409 5192 5.050 4.950 4.678 4527 4.365
6 5,987 5.143 4.757 4534 4387 4284 4.000 3.841 3.669
7 5591 4737 4.347 4120 3972 3.866 3.575 3.410 3.230
8 5318 4.459 4.066 3.838 3.687 3581 3.284 3.115 2.928
9 5117 4256 3.863 3.633 3.482 3.374 3.073 2900 2.707

10 | 4965 4.103 3.708 3.478 3.326 3.217 2913 2737 2.538

11 | 4.844 3982 3587 3357 3204 3.095 2788 2609 2404
12 | 4747 3885 3490 3259 3106 2996 2.687 2505 2.296
13 | 4667 3806 3411 3.179 3.025 2915 2.604 2420 2.206
14 | 4600 3.739 3.344 3.112 2958 2848 2534 2349 2131
15 | 4543 3.682 3287 3.056 2901 2790 2475 2.288 2.066

16 | 4494 3.634 3.239 3.007 2.852 2741 2425 2235 2.010
17 | 4451 3592 3.197 2965 2810 2699 2381 2190 1.960
18 | 4.414 3,555 3.160 2928 2773 2.661 2342 2.150 1.917
19 | 4381 3522 3.127 2895 2740 2628 2308 2.114 1.878
20 | 4351 3493 3.098 2866 2.711 2599 2278 2.082 1.843

25 | 4242 3385 2991 2759 2603 2490 2165 1964 1.711
30 | 4171 3316 2922 2690 2534 2421 2.092 1887 1.622
40 | 4.085 3232 2839 2606 2449 2336 2.003 1.793 1.509
50 | 4.034 3183 2.790 2557 2400 2286 1.952 1.737 1.438
100 | 3.936 3.087 269 2463 2305 2191 1.850 1.627 1.283

oco| 3841 2996 2605 2372 2214 2099 1.752 1517 1.002
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1 Percent Points of the F'-Distribution

This table gives the percentage poifis ,, (P) for
P = 0.01 and degrees of freedom , v, as indi-

cated by the figure to the right.

The lower percentage points, that is the values
F/  (P) such that the probability that® <

vi,V2

F!, . (P)is equal toP/100, may be found using

vi,v2

MATH5772

the formula P/100
FL1,V2(P):1/FV1,V2(P) 0 F(P)
v

|28 1 2 3 4 5 6 12 24 fo%e)

2 198.503 99.000 99.166 99.249 99.299 99.333 99.416 99.4584999.

3 | 34.116 30.817 29.457 28.710 28.237 27.911 27.052 26.5981226.

4 | 21.198 18.000 16.694 15.977 15.522 15.207 14.374 13.9294633.

5 |16.258 13.274 12.060 11.392 10.967 10.672 9.888 9.466 9.020

6 | 13.745 10925 9.780 9.148 8.746 8.466 7.718 7.313 6.880

7 | 12.246 9547 8451 7.847 7.460 7.191 6.469 6.074 5.650

8 |11.259 8.649 7591 7.006 6.632 6.371 5.667 5.279 4.859

9 | 10.561 8.022 6.992 6.422 6.057 5.802 5111 4.729 4311
10 | 10.044 7559 6,552 5994 5636 5386 4.706 4.327 3.909
11 9.646 7.206 6.217 5668 5.316 5.069 4.397 4.021 3.602
12 9.330 6.927 5953 5412 5.064 4821 4.155 3.780 3.361
13 9.074 6.701 5.739 5205 4.862 4620 3960 3.587 3.165
14 8.862 6.515 5564 5035 4695 4456 3.800 3.427 3.004
15 8.683 6.359 5417 4893 4556 4.318 3.666 3.294 2.868
16 8531 6.226 5.292 4773 4437 4202 3553 3.181 2.753
17 8.400 6.112 5.185 4.669 4336 4.102 3.455 3.084 2.653
18 8.285 6.013 5.092 4579 4248 4.015 3371 2999 2.566
19 8.185 5.926 5.010 4500 4.171 3.939 3.297 2925 2.489
20 8.096 5849 4938 4431 4103 3.871 3.231 2859 2421
25 7.770 5568 4675 4177 3.855 3.627 2993 2.620 2.169
30 7562 5390 4510 4.018 3.699 3.473 2.843 2.469 2.006
40 7314 5179 4.313 3.828 3514 3.291 2.665 2.288 1.805
50 7.171 5057 4199 3.720 3.408 3.186 2.562 2.183 1.683

100 6.895 4824 3984 3513 3.206 2.988 2.368 1.983 1.427
oo | 6.635 4.605 3.782 3.319 3.017 2802 2185 1.791 1.003
11 END



