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1. (a) Letx be ap-dimensional random vector withE(x) = µ andvar(x) = Σ = (σij). Let
P = (ρij) be the correlation matrix ofx. Define the correlationsρij in terms of the
covariancesσij and also write down a matrix equation definingP in terms ofΣ and a
diagonal matrix∆.

Use your matrix equation to show thatP is positive semi-definite. You should prove any
results aboutΣ that you use.

(b) Let x ∼ Np(µ, Σ). Write down expressions for the squared Euclidean, Pearson, and
Mahalanobis distances betweenx andµ. Briefly explain the similarities and differences
between these distance measures.

Show that the squared Mahalanobis distance betweenx andµ has aχ2
p distribution.

(c) Consider two random vectorsx ∼ N2(µx, Σ) andy ∼ N(µy, Σ) with densitiesfx(x)
andfy(y) respectively. Given thatµx = [1, 5]T andµy = [5, 1]T , sketch the contours
of the densities ofx andy on one graph.

Let z be a finite mixture distribution with density

fz(z) =
1

2
fx(x) +

1

2
fy(y).

FindE(z) and give the structure ofvar(z) (note that you do not have to find an explicit
form for var(z)). Use the structure ofvar(z) to explain why the Mahalanobis distance
is generally a poor choice for use in hierarchical cluster analysis.

(d) Find the change in the squared Euclidean, Pearson, and Mahalanobis distances between
x andµ if the random vectorx has distributionNp(µ, kΣ) instead ofNp(µ, Σ) for
some positive real constantk.

(e) Briefly explain how the result from part (b), that the Mahalanobis distance betweenx
andµ has aχ2

p distribution, can be used to detect outliers in a sample of data.

The table below presents datax1, . . . , x30 on the thickness of cork bark measured on
the north, east, south, and west sides of 30 trees, along withtransformed data data
y1, . . . , y30 whereyr = Axr with

A =




1 −1 1 −1
1 0 −1 0
0 1 0 −1



 .

Also tabulated are the Mahalanobis distancesd2
M(xr, x̄) betweenxr andx̄, andd2

M(yr, ȳ)
betweenyr and ȳ, calculated using the sample variance matrices. Use these Maha-
lanobis distances to comment on any outliers in the originaland transformed data sets.
What effect has the transformation had?
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North East South West
(x1) (x2) (x3) (x4) d2

M(xr, x̄) y1 y2 y3 d2
M(yr, ȳ)

59.5 55.3 73.5 59.7 18.3 18.0 -13.9 -4.3 9.2
70.4 55.2 72.4 54.1 17.0 33.5 -2.1 1.1 9.9
59.0 54.5 49.0 49.1 8.4 4.5 10.1 5.4 1.8
48.9 40.4 44.2 43.3 3.6 9.5 4.7 -2.9 2.8
42.2 41.8 35.4 32.4 6.4 3.4 6.8 9.5 0.9
70.4 65.4 64.9 53.6 12.7 16.3 5.4 11.8 3.8
37.6 33.0 35.7 31.5 7.7 8.9 1.9 1.5 0.4
45.3 44.4 40.1 37.7 3.1 3.3 5.1 6.7 0.2
33.0 37.8 32.1 33.0 10.7 -5.7 0.8 4.8 2.5
59.1 52.9 59.3 59.1 8.4 6.4 -0.2 -6.2 2.6
40.1 35.8 38.0 42.1 5.1 0.2 2.1 -6.3 3.0
45.4 45.2 47.5 51.3 12.1 -3.5 -2.1 -6.1 3.6
49.5 40.9 52.9 48.5 4.4 13.0 -3.4 -7.6 3.8
46.1 45.6 43.0 35.5 7.7 8.1 3.1 10.1 1.6
31.7 34.7 19.5 22.5 15.1 -6.0 12.2 12.2 2.9
45.3 38.7 54.4 47.0 10.1 14.0 -9.1 -8.2 5.6
47.1 41.4 37.6 43.2 8.0 0.1 9.5 -1.7 3.8
59.7 53.8 60.9 50.3 2.8 16.5 -1.1 3.5 1.9
53.3 51.0 54.4 51.8 4.1 4.9 -1.1 -0.8 0.8
49.8 41.6 45.3 41.8 3.0 11.7 4.4 -0.2 2.0
48.3 46.6 42.4 43.4 3.0 0.6 5.9 3.2 0.3
49.8 38.0 44.5 42.0 10.0 14.3 5.3 -4.0 5.5
65.3 58.2 64.4 56.1 3.3 15.4 0.9 2.1 1.5
60.3 52.4 66.8 58.0 5.2 16.8 -6.5 -5.6 4.1
68.1 57.5 70.2 55.9 6.5 24.9 -2.1 1.7 4.9
70.0 57.3 70.7 61.0 6.7 22.4 -0.7 -3.7 5.4
34.0 25.2 30.4 31.1 15.9 8.1 3.5 -5.9 3.8
55.8 45.1 54.6 56.1 11.0 9.2 1.2 -11.0 7.2
29.3 29.0 25.8 35.3 11.6 -9.2 3.5 -6.3 4.8
73.8 62.6 61.4 58.7 20.5 13.9 12.4 4.0 7.4
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2. (a) Let{xr; r = 1, . . . , n} be an independent sample from aNp(µ, Σ) distribution. Show
that the log-likelihood of the parametersµ andΣ given the data matrixX is

l(µ, Σ|X) = −n

2
log |Σ| − 1

2

n∑

r=1

(xr − µ)T Σ−1(xr − µ) + C,

giving an explicit expression for for the constantC. By writing (xr − µ) as(xr − x̄ +
x̄ − µ), show that the maximum likelihood estimate ofµ is µ̂ = x̄.

(b) Consider testingH0 : µ = 0 againstH1 : µ 6= 0 with Σ known. Show that the
likelihood ratio test statisticλ is equal to the the Mahalanobis distance betweenx̄ and0

with respect toΣ/n, i.e.
λ = nx̄TΣ−1x̄,

and state its distribution underH0.

(c) Now consider a two sample problem with independent samples{xr; r = 1, . . . , nx} and
{ys; s = 1, . . . , ny} from Np(µx, Σ) andNp(µy, Σ) distributions respectively, whereΣ
is a known variance matrix common to the two distributions.

Let d = x̄ − ȳ. Write down the distribution ofd. Construct a test statistic based on a
quadratic form involvingd andΣ to testH0 : µx = µy againstH1 : µx 6= µy. State the
distribution of this test statistic whenH0 is true.

Explain briefly what changes are needed to the test statisticand its distribution underH0

whenΣ is not known and must be estimated from the data.

(d) Measurements of cranial length and breadth in millimetres were made onnx = 14 male
andny = 35 female frogs. Sample means and sums of squares matrices were

x̄ =

[
21.8
22.8

]
, ȳ =

[
22.9
24.4

]
,

(nx − 1)Sx =

[
240 248
248 270

]
, (ny − 1)Sy =

[
601 690
690 830

]
.

Carry out a hypothesis test to determine whether male and female frogs have signifi-
cantly different mean cranial measurements.

Regardless of whether you find a significant difference between the two samples, con-
struct 95% simultaneous confidence intervals for the unit co-ordinate vectors and inter-
pret your findings.

Hint You may find it useful to recall that theT 2 andF distributions are related by the
equation

T 2(p, m) =
mp

m − p + 1
F (p, m − p + 1).
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3. (a) SupposeA is ap × p symmetric matrix with ordered distinct eigenvaluesλ1 > λ2 >
· · · > λp. Letxi be the unit eigenvector corresponding toλi for i = 1, . . . , n. Show that
xi andxj are orthogonal ifi 6= j.
Prove thatA can be written asA = ΓΛΓT whereΓ is an orthogonal matrix andΛ is
a diagonal matrix. Show howΓ andΛ can be constructed from the eigenvalues and
eigenvectors ofA.

(b) Let x be a random vector with mean vectorµ and variance matrixΣ, whereΣ has
spectral decompositionΣ = ΓΛΓT . Write down an equation defining the principal
component transformation which transformsx into a new random vectory.
FindE(y) andvar(y), noting any special structure of the diagonal elements ofvar(y).
Given a data matrixX, explain how a sample principal component analysis can be
carried out. Why is this sample principal component analysis useful in reducing the
effective dimension of the data?
(In your answer, you can use without proof the fact thataT Σa is maximised over all
possible unit vectorsa whena is the eigenvector ofΣ corresponding to the largest
eigenvalue ofΣ. Any further results that you assume about variance maximisation
should be clearly stated but need not be proved.)

(c) Show that the eigenvalues ofXT X are also eigenvalues ofXXT , whereX is ann × p
data matrix. When does this imply that principal component analysis can be used in
place of multi-dimensional scaling, and why might we preferto use principal compo-
nents?

(d) In a study of beef cattle, the length, height, girth, and percentage body fat of 150 Nor-
mandy cows were measured. A principal components analysis of these data using the
correlation matrix inR gave the following output, where “pc.bdy.ft ” is the variable
“percentage of body fat”.

> summary(prc)
Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.388 1.006 0.920 0.462
Proportion of Variance 0.482 0.253 0.212 0.053
Cumulative Proportion 0.482 0.735 0.947 1.000

> loadings(prc)

Loadings:
Comp.1 Comp.2 Comp.3 Comp.4

length 0.537 0.223 0.631 -0.513
girth 0.677 -0.037 0.034 0.743
height 0.498 -0.052 -0.753 -0.427
pc.bdy.fat -0.071 0.973 -0.183 0.123

Explain what information is given by this output. Suggest aninterpretation of the prin-
cipal components analysis. How might you use the above output in any further analysis
of the data?
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4. (a) Suppose p-dimensional measurements, represented as a random vectorx, can be made
on individuals from two populationsΠ1 andΠ2 with probability density functionsf1(x)
andf2(x) respectively. Briefly distinguish between the situations when cluster analysis
or discriminant analysis might be applied to data obtained from the two populations.

(b) In discriminant analysis, the maximum likelihood allocation rule defines two regions,
R1 andR2 in R

p. State how the pdfsf1(x) andf2(x) are used to defineR1 andR2, and
explain how these regions are used to construct the allocation rule.

Now assume that individuals fromΠi follow aNp(µi, Σ) distribution fori = 1, 2. Show
that in this case the regionR1 is

R1 =

{
x : (µ1 − µ2)

T Σ−1

[
x − 1

2
(µ1 + µ2)

]
> 0

}
.

For the bivariate case, sketch a diagram showing how the means µ1 andµ2 and the
contours of the density functionsf1(x) andf2(x) relate to the line separatingR1 and
R2.

(c) The classification probabilities of the allocation rulein (b) are defined to bepij =
P (x allocated toΠi|x from Πj), i, j = 1, 2. Show that the misclassification probabili-
ties are given byp12 = p21 = Φ(−∆/2), whereΦ is the cumulative distribution function
of a standard univariate normal and∆2 = (µ1 − µ2)

T Σ−1(µ1 − µ2).

(d) Suppose we have measurements on length and breath in millimetres of 50 human skulls
from pre-dynastic Egypt (population 1) and 50 skulls from Roman-era Egypt (popula-
tion 2). The mean vectors and pooled covariance matrix are

x̄1 =

[
134
132

]
x̄2 =

[
128
136

]
S =

[
3 1
1 3

]
.

Find the equation of the line dividingR1 andR2, and use parametric substitution to
evaluate the misclassification probabilitiesp12 andp21. In a large sample of skulls, what
proportion would you expect to be misclassified?

If you were only able to use one of the variables (either length or breadth) to classify
skulls, which would you choose to minimise the number of misclassifications? Why is
your chosen measurement likely to result in fewer misclassified skulls?

To which population would you assign a skull with height 135mm, breadth 133mm?
Why can you not use your misclassification probabilities above to say how confident
you are in your classification of this skull?
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5. Given ann × n symmetric matrix of dissimilarities,∆ = (δrs), classical multidimensional
scaling is used to find ann × p matrix X, where the Euclidean distances between the points
x1, . . . , xn specified by the rows ofX match the dissimilarities as closely as possible. The
classical multidimensional scaling solution is produced by the following algorithm.

(i) ConstructA = (ars) wherears = −1
2
δ2
rs.

(ii) SetB = HAH, whereH = In − 1
n
1n1

T
n is the centring matrix.

(iii) Take the spectral decompositionB = ΓΛΓT of B, whereΓ andΛ are constructed
from the eigenvectors and eigenvalues ofB in the usual way.

(iv) SetΓ1 =
[
γ(1), . . . , γ(p), 0, . . . , 0

]
andΛ1 = diag(λ1, . . . , λp, 0, . . . , 0).

(v) Let X = Γ1Λ
1/2
1 .

(a) Show that∆ is a Euclidean distance matrix if and only ifB is positive semi-definite.
(Recall thatB is positive semi-definite ifcT Bc > 0 for all c ∈ R

n.)

(b) A group of political science lecturers was asked to assess the dissimilarities on a scale
of 1 (very similar) to 9 (very dissimilar) between certain political leaders prominent at
the time of the second world war. The dissimilarity matrix obtained for (in order) Hitler,
Mussolini, Churchill, Roosevelt, Stalin, and Attlee is given by

∆ =





0 2 7 8 5 9
2 0 8 8 8 9
7 8 0 3 5 8
8 8 3 0 8 7
5 8 5 8 0 7
9 9 8 7 7 0




.

Is it possible to construct a set of points which has Euclidean distance matrix∆? How
many dimensions do you think would be best to represent this dissimilarity matrix? You
may find the following editedR output helpful (where∆ is represented asDelta ).

> A = -0.5 * Deltaˆ2
> H = diag(rep(1, 6)) - 1/6 * rep(1, 6) % * % t(rep(1, 6))
> B = H %* % A %* % H
> tmp = eigen(B)
> round(tmp$values, 1)
[1] 63.8 37.4 31.5 0.0 -0.9 -5.8
> round(tmp$vectors, 2)

[,1] [,2] [,3] [,4] [,5] [,6]
Hitler 0.53 0.02 0.10 -0.41 0.52 0.53
Mussolini 0.56 -0.03 -0.44 -0.41 -0.46 -0.34
Churchill -0.26 -0.47 0.30 -0.41 -0.53 0.42
Roosevelt -0.39 -0.48 -0.33 -0.41 0.49 -0.33
Stalin 0.00 0.28 0.70 -0.41 0.06 -0.51
Attlee -0.44 0.69 -0.33 -0.41 -0.08 0.23

Construct a set of points in two-dimensional space representing these political leaders,
sketch a plot of these points, and interpret your plot.
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Normal Distribution Function Tables

The first table gives

Φ(x) =
1√
2π

∫ x

−∞

e−
1

2
t2dt

and this corresponds to the shaded area in the figure
to the right. Φ(x) is the probability that a random
variable, normally distributed with zero mean and
unit variance, will be less than or equal tox. When
x < 0 useΦ(x) = 1 − Φ(−x), as the normal dis-
tribution with mean zero is symmetric about zero.
To interpolate, use the formula

Φ(x) ≈ Φ(x1) +
x − x1

x2 − x1

(
Φ(x2) − Φ(x1)

)
−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

Table 1

x Φ(x) x Φ(x) x Φ(x) x Φ(x) x Φ(x) x Φ(x)

0.00 0.5000 0.50 0.6915 1.00 0.8413 1.50 0.9332 2.00 0.9772 2.50 0.9938
0.05 0.5199 0.55 0.7088 1.05 0.8531 1.55 0.9394 2.05 0.9798 2.55 0.9946
0.10 0.5398 0.60 0.7257 1.10 0.8643 1.60 0.9452 2.10 0.9821 2.60 0.9953
0.15 0.5596 0.65 0.7422 1.15 0.8749 1.65 0.9505 2.15 0.9842 2.65 0.9960
0.20 0.5793 0.70 0.7580 1.20 0.8849 1.70 0.9554 2.20 0.9861 2.70 0.9965

0.25 0.5987 0.75 0.7734 1.25 0.8944 1.75 0.9599 2.25 0.9878 2.75 0.9970
0.30 0.6179 0.80 0.7881 1.30 0.9032 1.80 0.9641 2.30 0.9893 2.80 0.9974
0.35 0.6368 0.85 0.8023 1.35 0.9115 1.85 0.9678 2.35 0.9906 2.85 0.9978
0.40 0.6554 0.90 0.8159 1.40 0.9192 1.90 0.9713 2.40 0.9918 2.90 0.9981
0.45 0.6736 0.95 0.8289 1.45 0.9265 1.95 0.9744 2.45 0.9929 2.95 0.9984

0.50 0.6915 1.00 0.8413 1.50 0.9332 2.00 0.9772 2.50 0.9938 3.00 0.9987

The inverse functionΦ−1(p) is tabulated below for various values ofp.

Table 2

p 0.900 0.950 0.975 0.990 0.995 0.999 0.9995
Φ−1(p) 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902 3.2905
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Percentage Points of the χ2-Distribution

This table gives the percentage pointsχ2
ν(P ) for

various values ofP and degrees of freedomν, as
indicated by the figure to the right.

If X is a variable distributed asχ2 with ν de-
grees of freedom,P/100 is the probability that
X ≥ χ2

ν(P ).

Forν > 100,
√

2X is approximately normally dis-
tributed with mean

√
2ν − 1 and unit variance.

0 χ2
u(P )

P/100

Percentage pointsP

ν 10 5 2.5 1 0.5 0.1 0.05
1 2.706 3.841 5.024 6.635 7.879 10.828 12.116
2 4.605 5.991 7.378 9.210 10.597 13.816 15.202
3 6.251 7.815 9.348 11.345 12.838 16.266 17.730
4 7.779 9.488 11.143 13.277 14.860 18.467 19.997
5 9.236 11.070 12.833 15.086 16.750 20.515 22.105

6 10.645 12.592 14.449 16.812 18.548 22.458 24.103
7 12.017 14.067 16.013 18.475 20.278 24.322 26.018
8 13.362 15.507 17.535 20.090 21.955 26.124 27.868
9 14.684 16.919 19.023 21.666 23.589 27.877 29.666

10 15.987 18.307 20.483 23.209 25.188 29.588 31.420

11 17.275 19.675 21.920 24.725 26.757 31.264 33.137
12 18.549 21.026 23.337 26.217 28.300 32.909 34.821
13 19.812 22.362 24.736 27.688 29.819 34.528 36.478
14 21.064 23.685 26.119 29.141 31.319 36.123 38.109
15 22.307 24.996 27.488 30.578 32.801 37.697 39.719

16 23.542 26.296 28.845 32.000 34.267 39.252 41.308
17 24.769 27.587 30.191 33.409 35.718 40.790 42.879
18 25.989 28.869 31.526 34.805 37.156 42.312 44.434
19 27.204 30.144 32.852 36.191 38.582 43.820 45.973
20 28.412 31.410 34.170 37.566 39.997 45.315 47.498

25 34.382 37.652 40.646 44.314 46.928 52.620 54.947
30 40.256 43.773 46.979 50.892 53.672 59.703 62.162
40 51.805 55.758 59.342 63.691 66.766 73.402 76.095
50 63.167 67.505 71.420 76.154 79.490 86.661 89.561
80 96.578 101.879 106.629 112.329 116.321 124.839 128.261
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5 Percent Points of the F -Distribution

This table gives the percentage pointsFν1,ν2
(P ) for

P = 0.05 and degrees of freedomν1, ν2, as indi-
cated by the figure to the right.
The lower percentage points, that is the values
F ′

ν1,ν2
(P ) such that the probability thatF ≤

F ′

ν1,ν2
(P ) is equal toP/100, may be found using

the formula

F ′

ν1,ν2
(P ) = 1/Fν1,ν2

(P ) 0 F (P )

P/100

ν1

ν2 1 2 3 4 5 6 12 24 ∞

2 18.513 19.000 19.164 19.247 19.296 19.330 19.413 19.454 19.496
3 10.128 9.552 9.277 9.117 9.013 8.941 8.745 8.639 8.526
4 7.709 6.944 6.591 6.388 6.256 6.163 5.912 5.774 5.628
5 6.608 5.786 5.409 5.192 5.050 4.950 4.678 4.527 4.365

6 5.987 5.143 4.757 4.534 4.387 4.284 4.000 3.841 3.669
7 5.591 4.737 4.347 4.120 3.972 3.866 3.575 3.410 3.230
8 5.318 4.459 4.066 3.838 3.687 3.581 3.284 3.115 2.928
9 5.117 4.256 3.863 3.633 3.482 3.374 3.073 2.900 2.707

10 4.965 4.103 3.708 3.478 3.326 3.217 2.913 2.737 2.538

11 4.844 3.982 3.587 3.357 3.204 3.095 2.788 2.609 2.404
12 4.747 3.885 3.490 3.259 3.106 2.996 2.687 2.505 2.296
13 4.667 3.806 3.411 3.179 3.025 2.915 2.604 2.420 2.206
14 4.600 3.739 3.344 3.112 2.958 2.848 2.534 2.349 2.131
15 4.543 3.682 3.287 3.056 2.901 2.790 2.475 2.288 2.066

16 4.494 3.634 3.239 3.007 2.852 2.741 2.425 2.235 2.010
17 4.451 3.592 3.197 2.965 2.810 2.699 2.381 2.190 1.960
18 4.414 3.555 3.160 2.928 2.773 2.661 2.342 2.150 1.917
19 4.381 3.522 3.127 2.895 2.740 2.628 2.308 2.114 1.878
20 4.351 3.493 3.098 2.866 2.711 2.599 2.278 2.082 1.843

25 4.242 3.385 2.991 2.759 2.603 2.490 2.165 1.964 1.711
30 4.171 3.316 2.922 2.690 2.534 2.421 2.092 1.887 1.622
40 4.085 3.232 2.839 2.606 2.449 2.336 2.003 1.793 1.509
50 4.034 3.183 2.790 2.557 2.400 2.286 1.952 1.737 1.438

100 3.936 3.087 2.696 2.463 2.305 2.191 1.850 1.627 1.283

∞ 3.841 2.996 2.605 2.372 2.214 2.099 1.752 1.517 1.002
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1 Percent Points of the F -Distribution

This table gives the percentage pointsFν1,ν2
(P ) for

P = 0.01 and degrees of freedomν1, ν2, as indi-
cated by the figure to the right.
The lower percentage points, that is the values
F ′

ν1,ν2
(P ) such that the probability thatF ≤

F ′

ν1,ν2
(P ) is equal toP/100, may be found using

the formula

F ′

ν1,ν2
(P ) = 1/Fν1,ν2

(P ) 0 F (P )

P/100

ν1

ν2 1 2 3 4 5 6 12 24 ∞

2 98.503 99.000 99.166 99.249 99.299 99.333 99.416 99.458 99.499
3 34.116 30.817 29.457 28.710 28.237 27.911 27.052 26.598 26.125
4 21.198 18.000 16.694 15.977 15.522 15.207 14.374 13.929 13.463
5 16.258 13.274 12.060 11.392 10.967 10.672 9.888 9.466 9.020

6 13.745 10.925 9.780 9.148 8.746 8.466 7.718 7.313 6.880
7 12.246 9.547 8.451 7.847 7.460 7.191 6.469 6.074 5.650
8 11.259 8.649 7.591 7.006 6.632 6.371 5.667 5.279 4.859
9 10.561 8.022 6.992 6.422 6.057 5.802 5.111 4.729 4.311

10 10.044 7.559 6.552 5.994 5.636 5.386 4.706 4.327 3.909

11 9.646 7.206 6.217 5.668 5.316 5.069 4.397 4.021 3.602
12 9.330 6.927 5.953 5.412 5.064 4.821 4.155 3.780 3.361
13 9.074 6.701 5.739 5.205 4.862 4.620 3.960 3.587 3.165
14 8.862 6.515 5.564 5.035 4.695 4.456 3.800 3.427 3.004
15 8.683 6.359 5.417 4.893 4.556 4.318 3.666 3.294 2.868

16 8.531 6.226 5.292 4.773 4.437 4.202 3.553 3.181 2.753
17 8.400 6.112 5.185 4.669 4.336 4.102 3.455 3.084 2.653
18 8.285 6.013 5.092 4.579 4.248 4.015 3.371 2.999 2.566
19 8.185 5.926 5.010 4.500 4.171 3.939 3.297 2.925 2.489
20 8.096 5.849 4.938 4.431 4.103 3.871 3.231 2.859 2.421

25 7.770 5.568 4.675 4.177 3.855 3.627 2.993 2.620 2.169
30 7.562 5.390 4.510 4.018 3.699 3.473 2.843 2.469 2.006
40 7.314 5.179 4.313 3.828 3.514 3.291 2.665 2.288 1.805
50 7.171 5.057 4.199 3.720 3.408 3.186 2.562 2.183 1.683

100 6.895 4.824 3.984 3.513 3.206 2.988 2.368 1.983 1.427

∞ 6.635 4.605 3.782 3.319 3.017 2.802 2.185 1.791 1.003

11 END


