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© UNIVERSITY OF LEEDS
Examination for the Module MATH5450M
(June 2005)

Polymeric Fluids
Time allowed:3 hours
Answer FIVE of the SEVEN questions.

All questions carry equal marks.

In the power-law fluid model the shear viscosity is equaktd) = K |5, where+ is the
shear-rate and andn are positive constants.

(a) Explain what is meant by the ternsbiear thinningand shear thickeningnd state the
range of values of, for which the power law fluid is shear-thinning or shear-ieiging.

(b) A planeinclined at an angle to the horizontal is coated with a layer of power-law fluid
of thicknessh.

Defining Cartesian coordinates with directed down the slope ang perpendicular
to the slope and assuming from symmetry that the fluid velasiof the formu =
(u(y),0) , show that ther andy components of the momentum equation reduce to

Op  Ooy, .
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wherep is the fluid density and is the gravitational acceleration. State the boundary
conditions that apply on the free surfage= h. Hence find the pressurg, and show
that the shear stress,, is given by

Oye = pg(h —y)sina.

Find the form of the fluid velocity.(y) and show that the velocity at the free surface
is proportional toh "+ .

(c) The fluid in part(b) is replaced with a plastic material with yield stresg, Find the
position of the yield surface and the angldor which the material just flow down the
slope. What is the maximum thicknegs, for which the coating will remain fixed for
all anglesa.?

A polymeric fluid is contained between two parallel circuthsks of radiusa that are a
distanceh apart. The fluid is open to the atmosphererat a. The upper disk is ro-
tated at angular velocity? while the lower disk remains fixed, so that in cylindrical @ol
coordinates the fluid velocity between the plates is given by

Orz .
=—0
u 0,

where# is the unit vector in the angular direction.

(a) Calculate the strain-rate tensd, for this flow and show that it corresponds to a shear
flow with a shear-ratey = =2,

Identify theflow, gradientandvorticity directions and hence define the normal stress
differencesN; and N, in terms of the components of the stress tensor

Show that a normal force equal to

F = 27r/ (Trr + No + Dagm) 7dr
0

is required to maintain the separation of the plates, wpgreis atmospheric pressure,
and show from the radial momentum equation that

aTTT . N1 —+ N2
or ro
(b) For the caseV,(§) = A% and No(§) = Asy where A; and A, are constants, show
that
A+ A N2
Trr = —Patm + (1%2) (T - a) :
Hence find the forcel".
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3. (a) The extra stress in the linear Maxwell model is related to the strain-rdi¥¢) by
Jo
— = 2uE(t).
o+ o = 2uE()

wherer and . are constants.
Show that this may be written in the form

o= 2/t G(t —t"E(t")dt, (1)

—00

for some suitable choice for the relaxation modulug). Sketch a graph of7(¢) and
explain the significance of the parameter

Show, using equation (1), that the steady shear viscoségusl tos.
(b) Find the form of shear stress,, () generated by the fluid velocity = (y%(¢),0,0),

where
;YO t<07
Yy=40—3% 0<t<T,
0 t>T,

and+y, is a positive constant for (i) < 0, (i) 0 < ¢ < T and (iii) ¢ > T". Show that
if 7" is chosen to be equal to a particular valiig;;, theno,, = 0 for ¢t > T". Sketch
graphs ofo,, as a function of time foll” < T¢,i;, T = Tty andT > Tij¢.

4. The expression for the total stress in a rubber is
T =GF-FT —pL

whereF is the deformation gradient tensar, is the shear modulus and is an isotropic
contribution to the pressure.

(&) What is the deformation gradiett and stress for a volume-conserving uniaxial ex-
tension by a ratio\ in the z-direction? A piece of rubber, of initial cross sectionaar
Ag, is stretched by a ratia. If the sides of the rubber are exposed to the atmosphere,
so thatr,, = 7.. = —paum, Show that the force required to achieve the stretch is

f:GA()()\—%).

(b) Two light, thin pieces of rubber, of initial length, and initial cross sectional ared,
are attached by one end to a massand stretched to twice their initial length between
clamps a distancel, apart, as shown in the above diagram. Assume the only force
on the mass is due to the rubber.
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(i) For horizontal displacements from the equilibrium position of the mass, obtain
the total force on the mass due to the rubber in terms,af,, G and A, .

(i) Show that, for small values af/ L, the force on the mass is

5GAO£
2 Lo
(iii) The mass is initially held at the equilibrium position, tHeed horizontally with
initial velocity V' to the right. Given that a thin piece rubber becomes “slaok” f
A < 1, show that this will occur provided
8GAgLg

2
V Y

Hint: recall that the acceleratiof? = v4&

5. Asetof particles are allowed to move in the, y) plane, are subjected to a quadratic poten-
tial U = % (kw2 + kyy*), and placed in a shear flow with shear gradient inghdirection
(and flow in thez -direction) so that the equations of motion of each paracee

C(é—f—vy) = —kov+ fu (1),

<% = —ky+fy (t).
where (z (t) f, (t)) = (y(t) f, (t)) = keT and (z () f, (t)) = (y (t) fo (1)) = 0. kg is

Boltzmann’s constant and is the temperature.

(@ If k, =k, = k, show that the variable®,, (t) = (y*) and Q., (t) = (zy) satisfy the

equations
dQyy ksT
dQ., . k
dty = Vny - 2ZQ:vy

and obtain a similar equation f@,., (t) = (z?).

(b) Using the set of equations obtained in part (a), find the gtetate values of),, and
(), and show that the steady state valugXxf, is

Quw = kel (1 + gzﬁz) .

Tk 2k2

(c) The x component of the potential is now switched off, so that= 0 and k, = k.
Obtain the new dynamical equations fQx,,, Q,, and Q,,. Show that these new
equations are satisfied by

ny = (1, Qxy =C2 and me = 2Defft,

obtaining the constants andc, and finding the effective diffusion constafty.
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(@) The graph below is a sketch of the relaxation modutu@) for an unentangled melt.
Sketch similar graphs of the relaxation modulus for (i) ataegled melt, and (ii) a
rubber, and briefly explain the differences between thelggap

logG A
-1/2

-
log t

(b) The reptation contribution to the relaxation modulus foeatangled melt is

G(t):%/o p(s,t)ds

wherep is defined for0 < s < L so that
op _ p&p
ot 0s?
and
p(0,t) = p(L,t)=0
p(s,0) =1
Obtain a solution fop (s, t) by separation of variables, and hence show that

8 nt
G(t) =G, Z —5.3 OXP <_T_d)

n odd

obtaining an expression for the timg in terms of L and D.

You may use the resulf;" sin (ma) sin (nx) dz = 50,
(c) Obtain the viscosity and recolil after steady shéar,

B v [T sG (s)ds

= IS G (s)ds

for the reptation model.
You may use the results, oqqp ™! = %, 3=, 4qp "

— 7%
= 960
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7. Inthe Upper Convected Maxwell model the extra stresis given by
o=GA,

where the structure tensax satisfies

dA 1

— =K-A+A-K'—-—(A-1).

dt + T ( )

Here K is the velocity gradient tensor, with compones = 27“; and G and T are both
positive constants.

(a) Write down the equations for evolution of the tensor commsieA,,, A,,, 4,, and
A.. when an Upper Convected Maxwell fluid is subjected to a tearishear flow of
the formu = (yf(¢),0,0), for ¢t > 0.

Deduce that ifA = I att = 0, the second normal stress differen¥e = 0, — 0., is
equal to zero for > 0 for all functions f(¢).

(b) Show that if
f(t) = aexp(at),
the shear stress,, for ¢t > 0 is given by

aT

Opy = p—— exp(at) —exp(—t/7)|.

Find the form of the first normal stress differende = o, — 0, .
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For mula Sheet

Cartesian coordinates

pressurep, velocity, u = ue, + ve, + we,, velocity gradientK with K;; = Ou;

e
_Op op op _Ou  Ov  Ow
Vp_axex+8yey+8zez’ v u_8x+8y+8z’
ou Ou Ou 00y  00yy 004
— = = + +
Jdr 0Oy 0z Ox dy 0z
| Ov Ov Ov | 9ouy = 0oy, Do,
K_%O_y@ Vo= 8x+8y+0z
8_w 8_w 8_11) 00, n 0oy, n 0o,
Jdr 0Oy 0z Ox dy 0z
Cylindrical Polar Coordinates
velocity, u = ue, + vey + we, .
_Op 10p op 10 10v  Ow
vP_@reerr@@ee_l_@zez’ v u_rﬁr(ru)+r89+az’
ou 1ou v o
or rofd r 0z
K| 100 u o
or rdfd r 0z
ow 10w 0w
or r 00 0z
10 1 adgr 80” (X1}
R R e R Fa
1 8 1 80’99 80’29 Ogr — Orp
Vo= |29 (2 <
7 r2 (7“ Ure) * r 00 0z r
12 (’f’ ) + 18062 aO-zz
ror rz r 060 0z
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Spherical Polar Coordinates

u = ue, + veg + wey

8p 1 8p 1 0Op
Vp=—e, — ey,
P= % i ro0° +rsm€8¢ ¢
10 1 0 1 ow
Vou=—— (1 0) + —
4T 2 (r u)_l_rsmeae(vsm )+ rsinf 0¢’
Oou 10u v 1 Ou w
or rof r rsinf d¢ r
ov 10v u 1 ov w
K=| = -—&—=+- — — —cot#
or r89+7’ rsinf ¢ r
ow 10w 1 ow + U —l— ‘0
—— —— — —co
or r 00 rsinf 0¢
19 (.2 1 9 inb 1 00¢r _ 9901040
r2 Or (T 0-7"7") + rsind 00 (0-97" Sin ) + rsinf O¢ r
V.o= _TLB% (o) + rsilnﬁ% (090 5in 0) + rsilneagge i 0'97“_0'7“9;0'¢¢C0t9
T%% (T30-7"¢) + rsiln9 % (U€¢ sin 9) r511n9 agj;(b + O—‘W—UT‘Z’:_O—‘W bt

END



