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Polymeric Fluids

Time allowed:3 hours
Answer FIVE of the SEVEN questions.

All questions carry equal marks.

1. Define the shear viscosity of a fluid in terms of the shearssteand shear-rate. Explain the
meaning of the terms shear-thinning and shear-thickening.

The stressr in polymeric fluid is related to the shear-rateby
o +k0® =14,

wherek andn are positive constants. Show that for small shear stregses; 1/k that the
fluid behaves as a Newtonian fluid with viscosity Show for|o| > 1/k that fluid behaves
as a power-law fluid and determine the index of the power-I8ketch a graph of stress
versus shear-rate for this material. Is it shear-thinningh@ar-thickening?

This fluid is forced to flow down a channel of widft by a pressure gradient of magnitude

G . Show that the fluid velocity in the channel is given by

k:G3
4n

_G 2 2

(h4 - y4) )

Find the volume flux per unit lengtld)

h
szuw,
—h

and sketch a curve dbg () versuslog GG indicating the gradient at small and large values of
G.
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2. A polymeric fluid is contained between two parallel circuthsks of radiusa that are a
distanceh apart. The fluid is open to the atmosphererat . The upper disk is ro-
tated at angular velocity? while the lower disk remains fixed, so that in cylindrical aol
coordinates the fluid velocity between the plates is given by

_ oz
~h

Find the velocity gradienK and show that for > h the shear-rate is approximately%” .
Define the normal stress differencés and N, in this flow in terms of the components of
the extra stress tenser.

u

Hence show that a normal force equal to

F = 27r/ (Trr + No + Dagm) dr
0

is required to maintain the separation of the plates, whpgte is atmospheric pressure.
Show from the radial momentum equation that
87—7“7“ o Nl + N2

or r
For the caséV, (§) = V4% and N, (%) = ¥,%% where ¥, and ¥, are constants, show that

(U +P) 22 5,
Trr = —Patm + —2h2 (T —a ) .

Hence find the forcelF .

3. Write down an expression for the stress in a linear visctielélaid of relaxation modulus
G(t). By considering the stress generated by a shear-rate,

= o (cexpliw)
define the complex modulus* and explain the significance of the real and imaginary parts
of G*.
The shear stressg,(¢) in a linear Maxwell fluid is related to the shear-rétédoy
do

7$+U:M7'

Show that this is a linear viscoelastic fluid and find its rateon modulusG/(t).

Find the complex modulus of this fluid and show that the logsssiarage moduli are given
respectively by
o M o W
1+ w?r?’ 14 w272’

A fluid satisfying the linear Maxwell model is subjected te flollowing shear flow

. Jasinwt fort <0,
7o for ¢t > 0.

Find the shear stress for> 0.
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4. The expression for the total stress in a rubber is
T =GF-FT — gL

(a) What is the deformation gradieft and stresg for a volume-conserving uniaxial ex-
tension by a ratio\ in the z-direction? A piece of rubber, of initial cross sectionaar
Ay, is stretched by a ratia. If the sides of the rubber are exposed to the atmosphere,
so thatr,, = 7., = —paum , Show that the force required to achieve the stretch is

f:GA()()\—%).

[

m 0

Initially

vt

O
After time ¢ »—XG: a

(b) A massm is attached to a thin piece of rubber of initial lengthand initial cross
sectional aread,, as shown in the diagram. The other end of the rubber is liitia
held a distancé, away (so that the rubber is just taught) and then moved aveay fr
the mass at constant velocity, Let = be the displacement of the mass from its initial
position after timef.

v

v

(i) By considering the length,, of the rubber after time, obtain expressions for the
stretch, A, of the rubber and the accelerati%%f— of the mass (assuming that the
only force on the mass is due to the rubber - i.e. it moves witfraction)

(if) Defining X = x — vt, show that for smalll’i,
0
d’X _3GA

= X.
dt? lom

(ilf) Assuming the mass is initially at rest, obtain a solutiondi(and henceg) as a
function of time. For what velocities is the assumption obﬂnﬁg valid?

(iv) Given that the rubber becomes “slack” far< 1, find the value ofX at which
this occurs. Show that this occurs first when

13G Ag
t=m .
lom

Briefly describe the subsequent motion of the mass.
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5. Two particles, at positions; andx,, are joined by a spring with spring constanso that
their Langevin equations are

dl’l
CE = k(zy—m)+ f1 (1)
dl’g
CE = k(z1—m2)+ fo(t)

and (z, (t) fs(t)) = kgT,5 (Wherea, 3 =1 or 2).

(a) Defining the particle separation= z, — x;, show that

dr
(S ==2kr+ fo - fi

and obtain a similar equation for the centre of m&ss 1422,
(b) Defining @ = (r?), show that

dQ 4k 4kgT
PR

and obtain a similar equation fdf = (R?).

(c) Solve the equations faP and ) subject to initial conditions:; = x5 = 0.
Show that the energy in the sprin,= $kr* approaches an average valuejégT .
What is the diffusion constant for the centre of mass?

6. The Rouse equation for a polymer chain comprising beadsfridtion constant, connected
with springs of spring constarit is

81“8 82['8
C(&t —v(rs)) =hog +lns=0.N

This is used to model a chain in a rubber network, by setting
r, = rpats=0,and
r, = rgats=N
wherer, andrg represent the positions of the crosslink points at the ehtteeachain.

We supposea = v (rs—o) = £2 andvg = v (r,_y) = 28, and that

v (rs) = va + K- (ry — ra) whereK is the velocity gradient tensor.

(@) Letry =ra +  (rg — ra) + x,. Show that

and that

Ory,  0°x,

sz 0s?
Hence, obtain a partial differential equation for the newialale x,. What are the
boundary conditionsor, ats =0 ands = N?
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(b) Ignoring the terms due to velocity gradielit and random forcé, , show that the relax-
ation time of thepth normal modex, = X, sin (7£°) is

Ty, = —
p pg
wherer; = %
(c) Given that this model leads to a time-dependent modulusrof fo

00 th
G (t) = GO -+ GOZeXp <—7_—)
1

p=1

obtain approximations of the for@& (¢t) = ¢t* for ¢t > 1, and (by approximating the
sum as an integral) for < ;. Hence sketch a graph &fg G (¢) versuslogt. Why
doesn'tG (t) decay to zero?

You may use the resulf™ dX exp (—X?) = YT,

The constitutive equation for the Upper Convected Maxwelted is
T =GA—-/1,

where the structure tensax satisfies

dA 1
— =K-A+A-K'—-=—(A-1).
dt + 7'< )

A fluid that obeys the Upper Convected Maxwell model is sutiejgto a transient shear flow

u = (%y,0,0) where
. JO0 fort <0,
77Ny fort>o0.

Write down the equation for evolution of the tensdr, for ¢ > 0 and show that only the
componentsA,,, A,, change with time. Find4,, and A,, as functions of time and show
for 0 <t <« 7 that

Ay ~ 14 g%

Hence sketch a graph showing the first normal stress diiferaa a function of time.
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For mulae Sheet

Cartesian coordinates

pressurep, velocity, u = ue, + ve, + we,, velocity gradientK with K;; =

aui

e
_op dp ~ Op _Ou Ov | Ow
Vp_axex+8yey+8zez’ v U o 8y+ 0z’
@ 8_u 8_u 00y  00yy 004
Jdr 0Oy 0z Ox dy 0z
| Ov Ov Ov | 9ouy = 0oy, Do,
K= dr Oy 0z Vo= ox dy 0z
8_w 8_w 8_11) do,. 0oy, 00,
Jdr 0Oy 0z Ox dy 0z
Cylindrical Polar Coordinates
velocity, u = ue, + vey + we, .
_Op 10p op B 10v  Ow
vP_@reerr@@ee_l_@zez’ v u_rﬁr(ru)+r89+az’
ou 10w v ou
or rofd r 0z
K| 1o w0
or rod r 0z
ow 10w o
or r 00 0z
10 1 0oy, 00, o
R R e R Fa
1 10099 = Oo.g  0gr — Opg
Vo= |29 (2 <
7 r? (7“ Ure) + r 00 0z + r
12( ) + 18062 aO-zz
ror "oz r 00 0z
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Spherical Polar Coordinates

u = ue, + veg + wey

8p 1 8p 1 0Op
Vp=—e, — ey,
P= % i ro0° +rsm€8¢ ¢
10 1 0 1 ow
Vou=—— (1 0) + —
4T 2 (r u)_l_rsmeae(vsm )+ rsinf 0¢’
Oou 10u v 1 Ou w
or rof r rsinf d¢ r
ov 10v u 1 ov w
K=| = -—&—=+- — — —cot#
or r89+7’ rsinf ¢ r
ow 10w 1 ow + U —l— ‘0
—— —— — —co
or r 00 rsinf 0¢
19 (.2 1 9 inb 1 00¢r _ 9901040
r2 Or (T 0-7"7") + rsind 00 (0-97" Sin ) + rsinf O¢ r
V.o= _TLB% (o) + rsilnﬁ% (090 5in 0) + rsilneagge i 0'97“_0'7“9;0'¢¢C0t9
T%% (T30-7"¢) + rsiln9 % (U€¢ sin 9) r511n9 agj;(b + O—‘W—UT‘Z’:_O—‘W bt
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