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Time allowed:3 hours

Answer FIVE of the SEVEN questions.

All questions carry equal marks.

1. Define the shear viscosity of a fluid in terms of the shear-stress and shear-rate. Explain the
meaning of the terms shear-thinning and shear-thickening.

The stressσ in polymeric fluid is related to the shear-rateγ̇ by

σ + k2σ3 = ηγ̇,

wherek andη are positive constants. Show that for small shear stresses,|σ| ≪ 1/k that the
fluid behaves as a Newtonian fluid with viscosityη . Show for |σ| ≫ 1/k that fluid behaves
as a power-law fluid and determine the index of the power-law.Sketch a graph of stress
versus shear-rate for this material. Is it shear-thinning or shear-thickening?

This fluid is forced to flow down a channel of width2h by a pressure gradient of magnitude
G. Show that the fluid velocity in the channel is given by

u =
G

2η

(

h2 − y2
)

+
k2G3

4η

(

h4 − y4
)

.

Find the volume flux per unit length,Q

Q =

∫ h

−h

udy,

and sketch a curve oflog Q versuslog G indicating the gradient at small and large values of
G.
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2. A polymeric fluid is contained between two parallel circulardisks of radiusa that are a
distanceh apart. The fluid is open to the atmosphere atr = a. The upper disk is ro-
tated at angular velocityΩ while the lower disk remains fixed, so that in cylindrical polar
coordinates the fluid velocity between the plates is given by

u =
Ωrz

h
θ̂.

Find the velocity gradientK and show that forr ≫ h the shear-ratėγ is approximatelyrΩ
h

.
Define the normal stress differencesN1 andN2 in this flow in terms of the components of
the extra stress tensorσ .

Hence show that a normal force equal to

F = 2π

∫ a

0

(τrr + N2 + patm) rdr

is required to maintain the separation of the plates, wherepatm is atmospheric pressure.

Show from the radial momentum equation that

∂τrr

∂r
=

N1 + N2

r
.

For the caseN1(γ̇) = Ψ1γ̇
2 andN2(γ̇) = Ψ2γ̇

2 whereΨ1 andΨ2 are constants, show that

τrr = −patm +
(Ψ1 + Ψ2)Ω

2

2h2

(

r2 − a2
)

.

Hence find the force,F .

3. Write down an expression for the stress in a linear viscoelastic fluid of relaxation modulus
G(t). By considering the stress generated by a shear-rate,

γ̇ =
d

dt
(ǫ exp(iωt)) ,

define the complex modulusG∗ and explain the significance of the real and imaginary parts
of G∗ .

The shear stress,σ(t) in a linear Maxwell fluid is related to the shear-rateγ̇ by

τ
dσ

dt
+ σ = µγ̇.

Show that this is a linear viscoelastic fluid and find its relaxation modulus,G(t).

Find the complex modulus of this fluid and show that the loss and storage moduli are given
respectively by

G′ =
µω2τ

1 + ω2τ 2
, G′′ =

µω

1 + ω2τ 2
.

A fluid satisfying the linear Maxwell model is subjected to the following shear flow

γ̇ =

{

a sin ωt for t < 0,

0 for t ≥ 0.

Find the shear stress fort > 0.
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4. The expression for the total stress in a rubber is

τ = GF · FT − βI.

(a) What is the deformation gradientF and stressτ for a volume-conserving uniaxial ex-
tension by a ratioλ in thex-direction? A piece of rubber, of initial cross sectional area
A0 , is stretched by a ratioλ. If the sides of the rubber are exposed to the atmosphere,
so thatτyy = τzz = −patm , show that the force required to achieve the stretch is

f = GA0

(

λ −
1

λ2

)

.

After time t x

vt

l
0

l

m
Initially

(b) A massm is attached to a thin piece of rubber of initial lengthl0 and initial cross
sectional areaA0 , as shown in the diagram. The other end of the rubber is initially
held a distancel0 away (so that the rubber is just taught) and then moved away from
the mass at constant velocity,v . Let x be the displacement of the mass from its initial
position after timet.

(i) By considering the length,l , of the rubber after timet, obtain expressions for the
stretch,λ, of the rubber and the accelerationd2x

dt2
of the mass (assuming that the

only force on the mass is due to the rubber - i.e. it moves without friction)

(ii) Defining X = x − vt, show that for smallX
l0

,

d2X

dt2
= −

3GA0

l0m
X.

(iii) Assuming the mass is initially at rest, obtain a solution forX (and hence,x) as a
function of time. For what velocities is the assumption of small X

l0
valid?

(iv) Given that the rubber becomes “slack” forλ < 1, find the value ofX at which
this occurs. Show that this occurs first when

t = π

√

3GA0

l0m
.

Briefly describe the subsequent motion of the mass.
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5. Two particles, at positionsx1 andx2 , are joined by a spring with spring constantk so that
their Langevin equations are

ζ
dx1

dt
= k (x2 − x1) + f1 (t)

ζ
dx2

dt
= k (x1 − x2) + f2 (t)

and〈xα (t) fβ (t)〉 = kBTδαβ (whereα , β = 1 or 2).

(a) Defining the particle separationr = x2 − x1 , show that

ζ
dr

dt
= −2kr + f2 − f1

and obtain a similar equation for the centre of massR = x1+x2

2
.

(b) Defining Q = 〈r2〉, show that

dQ

dt
= −

4k

ζ
Q +

4kBT

ζ

and obtain a similar equation forP = 〈R2〉.

(c) Solve the equations forP andQ subject to initial conditionsx1 = x2 = 0.
Show that the energy in the spring,U = 1

2
kr2 approaches an average value of1

2
kBT .

What is the diffusion constant for the centre of mass?

6. The Rouse equation for a polymer chain comprising beads withfriction constantζ connected
with springs of spring constantk is

ζ

(

∂rs

∂t
− v (rs)

)

= k
∂2

rs

∂s2
+ fs, s = 0..N

This is used to model a chain in a rubber network, by setting

rs = rA at s = 0, and

rs = rB at s = N

whererA andrB represent the positions of the crosslink points at the ends of the chain.

We supposevA = v (rs=0) = drA
dt

andvB = v (rs=N) = drB
dt

, and that
v (rs) = vA + K· (rs − rA) whereK is the velocity gradient tensor.

(a) Let rs = rA + s
N

(rB − rA) + xs . Show that

∂rs

∂t
− v (rs) =

∂xs

∂t
− K · xs

and that
∂2

rs

∂s2
=

∂2
xs

∂s2

Hence, obtain a partial differential equation for the new variable xs . What are the
boundary conditions onxs at s = 0 ands = N ?
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(b) Ignoring the terms due to velocity gradientK and random forcefs , show that the relax-
ation time of thepth normal modexs = Xp sin

(

πps

N

)

is

τp =
τ1

p2

whereτ1 = N2ζ

π2k
.

(c) Given that this model leads to a time-dependent modulus of form

G (t) = G0 + G0

∞
∑

p=1

exp

(

−
p2t

τ1

)

obtain approximations of the formG (t) = ctα for t ≫ τ1 and (by approximating the
sum as an integral) fort ≪ τ1 . Hence sketch a graph oflog G (t) versuslog t. Why
doesn’tG (t) decay to zero?

You may use the result
∫ ∞
0

dX exp (−X2) =
√

π

2
.

7. The constitutive equation for the Upper Convected Maxwell model is

τ = GA−βI,

where the structure tensorA satisfies

dA

dt
= K · A + A · KT −

1

τ
(A − I) .

A fluid that obeys the Upper Convected Maxwell model is subjected to a transient shear flow
u = (γ̇y, 0, 0) where

γ̇ =

{

0 for t < 0,

g for t ≥ 0.

Write down the equation for evolution of the tensor,A , for t ≥ 0 and show that only the
componentsAxx, Axy change with time. FindAxy andAxx as functions of time and show
for 0 < t ≪ τ that

Axx ∼ 1 + g2t2.

Hence sketch a graph showing the first normal stress difference as a function of time.
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Formulae Sheet

Cartesian coordinates

pressure,p, velocity,u = uex + vey + wez , velocity gradient,K with Kij = ∂ui

∂xj

∇p =
∂p

∂x
ex +

∂p

∂y
ey +

∂p

∂z
ez, ∇ · u =

∂u

∂x
+

∂v

∂y
+

∂w

∂z
,

K =























∂u

∂x

∂u

∂y

∂u

∂z

∂v

∂x

∂v

∂y

∂v

∂z

∂w

∂x

∂w

∂y

∂w

∂z























∇ · σ =























∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z

∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z























Cylindrical Polar Coordinates

velocity, u = uer + veθ + wez .

∇p =
∂p

∂r
er +

1

r

∂p

∂θ
eθ +

∂p

∂z
ez, ∇ · u =

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+

∂w

∂z
,

K =





















∂u

∂r

1

r

∂u

∂θ
−

v

r

∂u

∂z

∂v

∂r

1

r

∂v

∂θ
+

u

r

∂v

∂z

∂w

∂r

1

r

∂w

∂θ

∂w

∂z





















∇ · σ =





















1

r

∂

∂r
(rσrr) +

1

r

∂σθr

∂θ
+

∂σzr

∂z
−

σθθ

r

1

r2

∂

∂r

(

r2σrθ

)

+
1

r

∂σθθ

∂θ
+

∂σzθ

∂z
+

σθr − σrθ

r

1

r

∂

∂r
(rσrz) +

1

r

∂σθz

∂θ
+

∂σzz

∂z




















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Spherical Polar Coordinates

u = uer + veθ + weφ

∇p =
∂p

∂r
er +

1

r

∂p

∂θ
eθ +

1

r sin θ

∂p

∂φ
eφ,

∇ · u =
1

r2

∂

∂r

(

r2u
)

+
1

r sin θ

∂

∂θ
(v sin θ) +

1

r sin θ

∂w

∂φ
,

K =























∂u

∂r

1

r

∂u

∂θ
−

v

r

1

r sin θ

∂u

∂φ
−

w

r

∂v

∂r

1

r

∂v

∂θ
+

u

r

1

r sin θ

∂v

∂φ
−

w

r
cot θ

∂w

∂r

1

r

∂w

∂θ

1

r sin θ

∂w

∂φ
+

u

r
+

v

r
cot θ























∇ · σ =















1

r2

∂
∂r

(r2σrr) + 1

r sin θ
∂
∂θ

(σθr sin θ) + 1

r sin θ

∂σφr

∂φ
−

σθθ+σφφ

r

− 1

r3

∂
∂r

(r3σrθ) + 1

r sin θ
∂
∂θ

(σθθ sin θ) + 1

r sin θ

∂σφθ

∂φ
+

σθr−σrθ−σφφ cot θ

r

1

r3

∂
∂r

(r3σrφ) + 1

r sin θ
∂
∂θ

(σθφ sin θ) + 1

r sin θ

∂σφφ

∂φ
+

σφr−σrφ+σφθ cot θ

r














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