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All questions carry equal marks.

1. The following set of ordinary differential equations (ODEs) has been proposed as a model
of a coupled disk dynamo:

ẋ = (β − 1)x− αy − xz,

ẏ = x− y,

ż = −z + βx2,

where α > 0 and β > 0 are parameters, and x(t), y(t) and z(t) represent aspects of the
physical model.

(a) Find the equilibrium states of the ODEs.

(b) Determine the stability of the equilibria, giving the locations of the codimension-one
and codimension-two bifurcations, and showing that there are Hopf bifurcations when

β = 2 with α > 1, and α = 1 with β > 2.

(c) Draw the bifurcation lines in the (α, β) parameter plane, indicating where the equilibria
are stable or unstable.

(d) Argue that there must be additional (global) bifurcations, and indicate where these
might be located in the (α, β) parameter plane
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2. Consider the following third-order set of ODEs:

u̇ = κu− λv − vw,

v̇ = u,

ẇ = −w + v2,

where κ and λ are parameters.

(a) Find the equilibrium states of the ODEs.

(b) Show that there is a codimension-two bifurcation at the parameter values κ = λ = 0.

(c) By writing w = h(u, v), perform a centre manifold reduction at κ = λ = 0, and show
that the dynamics at the codimension-two point is governed by ODEs of the form:

u̇ = Su3 + Ru2v + Quv2 + Pv3,

v̇ = u,

where P , Q, R and S are constants to be determined.

(d) At κ = λ = 0, perform a near-identity change of coordinates of the form

x = u + α1u
3 + β1u

2v + γ1uv2 + δ1v
3,

y = v + α2u
3 + β2u

2v + γ2uv2 + δ2v
3

to transform the equations into the form

ẋ = Qxy2 + Py3,

ẏ = x.

3. Discuss the Shil’nikov global bifurcation, taking as an example the set of ODEs:

ẋ = λ−x− ωy + f1(x, y, z; µ)

ẏ = ωx + λ−y + f2(x, y, z; µ)

ż = λ+z + f3(x, y, z; µ)

where µ is a parameter, λ− < 0 < λ+, ω > 0 and fi are purely nonlinear functions of x, y
and z. Assume that when µ = 0, there is a homoclinic orbit that leaves the origin with z > 0
and returns to the origin tangent to the (x, y) plane, and that when µ < 0, the unstable
manifold of the origin returns above the (x, y) plane.

Include in your discussion an outline of the derivation of an approximate return map from a
surface of section Σ (close to the origin) to itself. Indicate how this map describes the periodic
orbits of the ODEs for small |µ|, distinguishing the cases |λ−| > |λ+| and |λ−| < |λ+|. Show
that in one of these two cases, for |µ| sufficiently small, typical systems of this sort have
periodic orbits of period T if

µ ≈ Aeλ−T cos(ωT − Φ)

where A and Φ are constants.
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4. Consider a continuous one-dimensional map:

xn+1 = f(xn)

from an interval I to itself.

(a) State carefully what it means for such a map to have a horseshoe. Give an example of
a map that has a horseshoe.

(b) Define the topological entropy of such a map. Show that if a map has a horseshoe, it
has positive topological entropy, defining carefully any terms you need.

Consider the family of tent maps:

xn+1 = Ts(xn) =

{
sxn if 0 ≤ xn ≤ 1

2

s(1− xn) if 1
2
≤ xn ≤ 1

(c) Show that Ts is a map from I = [0, 1] to itself provided that 0 ≤ s ≤ 2.

(d) Show that if
√

2 < s ≤ 2, the map T 2
s has a horseshoe.
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