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1. (a) LetY1, . . . , Yn be a sample from a one-parameter exponential family distribution with
densityfY (y; θ) = exp{yθ− b(θ) + c(y)}. Show that the maximum likelihood estimate
θ̂ of θ is given byb′(θ̂) =

∑
i yi/n.

(b) Now assume thatY ∼ Exp(λ), λ > 0 so that

fY (y; λ) =

{
λe−λy y > 0
0 y < 0.

Find the exponential family form ofY and use this form to find the expectation and
variance ofY . Use the result from part (a) to show that the maximum likelihood estimate
of λ given a sampleY1, . . . , Yn is λ̂ = n/

∑
i Yi.

(c) In a test to determine the average lifetime of lightbulbs, 25 lightbulbs were left on until
they failed. The lifetimes in thousands of hours is recorded below. Assuming that an
exponential distribution is appropriate to model these data, use the result from part (b)
to find the value of̂λ for these data.

5.50 3.90 3.75 5.98 4.02
0.11 2.43 2.00 13.95 4.35
4.51 4.60 1.27 6.61 6.88
1.09 4.59 16.79 0.05 9.97
5.52 3.49 2.23 3.25 2.49

A sample of 25 lightbulbs of an improved design were also tested. Explain how a gener-
alized linear model with a log link function could be constructed to model the lifetimes
of the two samples of lightbulbs and give the design matrixX for this model. Write
down an equation forλ in terms of regression parametersβ1 andβ2.

The average lifetime of the bulbs in the second sample was 5349.2 hours. Find the
regression parameter estimates for your generalized linear model.
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2. The growth ofTetrahymenacells was thought to depend on two factors; the initial concen-
tration of cells in a sample and the presence or absence of glucose. Thirty two samples were
prepared with glucose and 19 without. For each sample, the initial concentration of cells was
measured and the sample left to grow in controlled conditions. Once the cells were mature,
the average cell diameter was measured.

(a) Lety be the average cell diameter,x1 be a factor taking value 1 if the sample contained
glucose and 2 if the sample contained no glucose, andx2 be the initial cell concentration.
Assume that samplesi = 1, . . . , 32 are those with glucose present.

Construct the design matrices corresponding to the modelsy ∼ x1 +x2 andy ∼ x1 ∗x2.

(b) The plots below showy againstx2 (left plot) andy againstlog10 x2 (right plot). Explain
why in this case it is appropriate to usex3 = log10 x2 rather thanx2 as an explanatory
variable. Comment on any features of the data that are apparent from these plots.

Interpret the modelsy ∼ 1, y ∼ x1, y ∼ x3, y ∼ x1 + x3, andy ∼ x1 ∗ x3 in terms of
lines on the plot ofy againstx3.
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(c) Fitting the various models from part (b) inR gave the following deviances.

Model number Model Deviance
1 y ∼ 1 165.72000
2 y ∼ x1 143.70612
3 y ∼ x3 36.18442
4 y ∼ x1 + x3 10.15089
5 y ∼ x1 ∗ x3 10.07332

For each model, write down the number of free parametersr.

Use appropriate hypothesis tests to determine which model is most appropriate. The
following R code gives upper 5% points of variousF distributions which may be of
use.

> qf(0.05, df1 = 1, df2 = c(1, 5, 46, 51), lower.tail=F)
[1] 161.448 6.608 4.047 4.030
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3. (a) LetY ∗ = Y/m whereY ∼ Bin(m, p). Show that the mass function ofY ∗ is

fY ∗(y∗) =

(
m
y

)
py(1− p)m−y.

Hence expressY ∗ as an exponential family random variable.

(b) Find the deviance of a binomial generalized linear model for datayi ∼ Bin(mi, pi), i =
1, . . . , n with fitted parameterŝpi. You may use the facts that for any generalized linear
model the deviance is defined to beD = 2φ{l(θ̃|y)−l(θ̂|y)}whereθ̃ are the parameters
of the saturated model and the log-likelihood of parameter vectorθ given datay =
(y1, . . . , yn) is

l(θ|y) =
n∑

i=1

{
θiyi − b(θi)

ai(φ)
+ c(yi, φ)

}
.

For two candidate modelsM1 andM2 explain when and how the deviances can be used
to test which model provides a better description of the data.

(c) A study was conducted to investigate how the incidence of coronary heard disease (chd)
in n = 462 patients was associated with age, obesity, and previous family history of
heart disease (famhist). Age and obesity were recorded as quantitative variables and
famhist as a two-level factor.

The followingR code gives the deviances of a sequence of models fitted to these data.
Use the deviances to determine which is the most appropriate model and comment on
your result. You may find the percentage points given at the end of theR output helpful
in conducting the necessary hypothesis tests.

> deviance(glm(chd ˜ age*famhist*obesity, family=binomial))
[1] 505.5772
> deviance(glm(chd ˜ age+famhist+obesity, family=binomial))
[1] 506.6312
> deviance(glm(chd ˜ age+famhist, family=binomial))
[1] 506.6582
> deviance(glm(chd ˜ age+obesity, family=binomial))
[1] 525.5529
> deviance(glm(chd ˜ famhist+obesity, family=binomial))
[1] 559.5388
> deviance(glm(chd ˜ age, family=binomial))
[1] 525.5623
> deviance(glm(chd ˜ famhist, family=binomial))
[1] 561.8944
> deviance(glm(chd ˜ obesity, family=binomial))
[1] 591.5284

> qchisq(0.05, df = c(1, 2, 3, 4, 5, 6), lower = F)
[1] 3.841 5.991 7.815 9.488 11.070 12.592
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4. (a) A generalized linear model consists of a random componentY , a linear predictorη and
a link functiong. Explain how the link function connectsY to η.
Given a specific distribution forY , explain how the canonical link function is defined.
LetY ∼ Po(λ). WriteY in exponential family form and find the canonical link function
for this choice of error distribution. What is the main advantage of the canonical link
function over an identity link function in this case?

(b) Consider a two-way contingency table with countYij in row i and columnj for i =
1, . . . , I andj = 1, . . . , J . Assume thatYij ∼ Po(λij) with all counts being mutually
independent. LetYi• =

∑
j Yij, yi• =

∑
j yij, andλi• =

∑
j λij. Show that

P{Yij = yij for j = 1, . . . , J |Yi• = yi•} = K(yi1, . . . , yiJ)
J∏

j=1

p
yij

ij ,

giving explicit expressions forK(yi1, . . . , yiJ) andpij and an intuitive explanation of
whatpij represents.
Assuming that the Poisson parameters are modelled bylog λij = µ + αi + βj + (αβ)ij,
show that

pij =
exp{βj + (αβ)ij}∑
j′ exp{βj′ + (αβ)ij′}

.

(c) In 2000, the Australian Government Statistical Service surveyed 1170 people as to
whether they would accept cuts in the standard of living to help the environment on
a scale of 1: very willing to 5: very unwilling. The data are tabulated below.

Sex Willingness Total
1 2 3 4 5

Female 34 149 160 142 168 653
Male 30 131 152 98 106 517

The data were analysed inR with the following edited results.

> glm(count ˜ sex + will, family=poisson)

Call: glm(formula = count ˜ sex + will, family=poisson)

Coefficients:
(Intercept) sex2 will2

3.5757 -0.2335 1.4759
will3 will4 will5

1.5841 1.3218 1.4542

Explain why it is appropriate to condition on the row totals in this case.
Assuming that this model is appropriate, explain why we can conclude that women and
men have the same attitudes regarding their willingness to accept lower standard of life
to help the environment.
Calculate the probabilities of people to be very willing (1) or very unwilling (5) to accept
cuts in the standard of living to help the environment.
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