MATH377201

This question paper consists of 4 printed pages, each of which is identified by the reference MATH377201.

New Cambridge Elementary Statistical Tables are provided. Only approved basic scientific calculators may be used.

©UNIVERSITY OF LEEDS

Examination for the Module MATH3772 (January 2003)

MULTIVARIATE ANALYSIS

Time allowed: 2 hours

Attempt not more than THREE questions.
All questions carry equal marks.

1. The $p \times 1$ random vector x has a multivariate normal distribution with probability density function

$$f(\mathbf{x}) = |2\pi\Sigma|^{-1/2} \exp\Big\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\Big\}, \qquad \mathbf{x} \in \mathbb{R}^p,$$

and moment generating function

$$M_{\mathbf{x}}(\mathbf{t}) = \exp\left\{\mathbf{t}^T \boldsymbol{\mu} + \frac{1}{2} \mathbf{t}^T \Sigma \mathbf{t}\right\}$$

The matrix Σ is non-singular. We write $\mathbf{x} \sim N_p(\boldsymbol{\mu}, \Sigma)$.

(a) Let x be partitioned into p_1 and p_2 components, $p_1 + p_2 = p$, with corresponding partitions

$$oldsymbol{\mu} = \left(egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array}
ight) \quad ext{ and } \quad \Sigma = \left(egin{array}{cc} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{array}
ight).$$

Using the moment generating function, show that the marginal distribution of x_1 is $N_{x_1}(\mu_1, \Sigma_{11})$.

(b) Consider $y = x_1 + Mx_2$, where M is a $p_1 \times p_2$ matrix. Show that

$$Cov(\mathbf{y}, \mathbf{x}_2) = \Sigma_{12} + M\Sigma_{22}$$

What value of M results in independence between y and x_2 ?

(c) Suppose

$$\mathbf{x} = \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \sim N_2 \left(\left(\begin{array}{c} 2 \\ 3 \end{array} \right), \left(\begin{array}{cc} 1 & 0.5 \\ 0.5 & 4 \end{array} \right) \right).$$

Construct a new random vector $\mathbf{z} = (z_1, z_2)^T$ with $z_1 = 2x_1 + x_2$, $z_2 = x_1 - x_2$. Find the variance matrix and correlation matrix of \mathbf{z} .

2. (a) Let x_1, \dots, x_n be a random sample from $N_p(\mu_x, \Sigma)$ and y_1, \dots, y_m be a random sample from $N_p(\mu_y, \Sigma)$. The two samples are independent of one another. Show that the union intersection test of the hypothesis $H_0: \mu_x = \mu_y$ vs. $H_1: \mu_x \neq \mu_y$, where Σ is unknown, leads to the test statistic

$$T^2 = \frac{nm}{n+m}(\bar{\mathbf{x}} - \bar{\mathbf{y}})^T S_p^{-1}(\bar{\mathbf{x}} - \bar{\mathbf{y}}),$$

where $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ are sample mean vectors and S_p is the pooled within groups estimate of Σ .

- (b) If H_0 is rejected in the overall test, how can simultaneous confidence intervals be used to give insight into the reasons for rejection?
- (c) In a study to compare male gorilla skulls with female skulls the following variables were measured:

variable 1 = braincase length, variable 2= braincase height.

A sample of 11 males and 11 females yielded the following summary statistics:

$$ar{\mathbf{x}} = \left(egin{array}{c} 152 \ 103 \end{array}
ight), \qquad S_x = \left(egin{array}{cc} 40 & 10 \ 10 & 25 \end{array}
ight),$$

$$\bar{\mathbf{y}} = \left(\begin{array}{c} 142 \\ 101 \end{array} \right), \qquad S_y = \left(\begin{array}{cc} 32 & 4 \\ 4 & 17 \end{array} \right).$$

The pooled covariance matrix for the two samples and its inverse are given by

$$S_p = \begin{pmatrix} 36 & 7 \\ 7 & 21 \end{pmatrix}, \qquad S_p^{-1} = \begin{pmatrix} 0.03 & -0.01 \\ -0.01 & 0.05 \end{pmatrix}.$$

Explain how S_p is calculated. Compare the sexes on the basis of the information provided.

Hints:

- 1. You may use the fact that the Hotelling T^2 and F distribution are related by $T^2(p,\nu) = \{\nu p/(\nu-p+1)\}F(p,\nu-p+1)$
- 2. Simultaneous 100α percent confidence intervals for this problem can be written in the form

$$(\mathbf{a}^T(\bar{\mathbf{x}} - \bar{\mathbf{y}}) - c, \mathbf{a}^T(\bar{\mathbf{x}} - \bar{\mathbf{y}}) + c)$$

where $c = \left\{T_{\alpha}^2(p,\nu)\frac{n+m}{nm}\mathbf{a}^TS_p\mathbf{a}\right\}^{\frac{1}{2}}$ and $T_{\alpha}^2(p,\nu)$ is the 100α percentage point of the $T^2(p,\nu)$ distribution]

- 3. (a) Let x be a p-dimensional random vector with mean vector μ and covariance matrix Σ .
 - (i) Define the principal components y of x in terms of the standardized eigenvectors of Σ.
 - (ii) Obtain the variance-covariance matrix of the principal components y
 - (iii) If $\Sigma = \alpha \alpha^T$ for some vector α , find the first principal component. What can you say about the other principal components?
 - (b) Data were collected on 50 irises from the species *Iris setosa*. The variables are: x_1 =sepal length; x_2 =sepal width; x_3 =petal length; x_4 =petal width. The sample mean vector and correlation matrix were

$$\mathbf{x} = \begin{pmatrix} 5.01 \\ 3.43 \\ 1.46 \\ 0.25 \end{pmatrix}, \qquad R = \begin{pmatrix} 1 & 0.74 & 0.27 & 0.28 \\ 0.74 & 1 & 0.18 & 0.23 \\ 0.27 & 0.18 & 1 & 0.33 \\ 0.28 & 0.23 & 0.33 & 1 \end{pmatrix}.$$

Principal component analysis gave eigenvalues 2.06, 1.02, 0.67, 0.25. The corresponding eigenvectors were the columns of

$$\begin{pmatrix} 0.60 & -0.33 & 0.07 & 0.72 \\ 0.58 & -0.44 & 0.00 & -0.69 \\ 0.38 & 0.63 & 0.68 & -0.09 \\ 0.40 & 0.55 & -0.73 & -0.01 \end{pmatrix}$$

Interpret these principal components briefly. Assess their relative contribution to total variation. What methods can be used to decide on the number of components we should retain?

MATH377201

4. (a) Let $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^p$, denote two probability density functions for populations Π_1 and Π_2 respectively, with prior probabilities π_1 and π_2 , where $\pi_1 + \pi_2 = 1$. Consider the allocation rule which assigns \mathbf{x} to Π_1 if

$$\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge \frac{\pi_2}{\pi_1}$$

and to Π_2 otherwise. Show that this rule is admissible.

(b) If the two populations have $N_p(\mu_1, \Sigma)$ and $N_p(\mu_2, \Sigma)$ distributions and $\pi_1 = 2\pi_2$, show that this rule classifies x as coming from the first population if

$$(\mu_1 - \mu_2)\Sigma^{-1}\mathbf{x} \ge c$$

and to the second population otherwise, for a suitable constant c. What is the value of c?

(c) Let

$$\Sigma = \left(egin{array}{cc} 2 & 1 \ 1 & 5 \end{array}
ight), \qquad oldsymbol{\mu_1} = \left(egin{array}{cc} 2 \ 2 \end{array}
ight), \qquad oldsymbol{\mu_2} = \left(egin{array}{cc} 5 \ 1 \end{array}
ight).$$

Calculate and sketch the boundary between the two classification regions for $\pi_1 = 2\pi_2$ and $\pi_1 = \pi_2$ respectively. Compare these boundaries. How would you classify $\mathbf{x} = (3,2)^T$ under each rule?

END