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Do not answer more than four questions.
All questions carry equal marks.

1. (a) Explain how to interpret the meaning of the following two-step binomial tree model
with interest rate r = 0 where stock values are in boxes and transition probabilities
are in parentheses,
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Define and calculate the implied probabilities for each branch of this model.

(b) Define a European call option with strike price $10 and expiry T = 2, the contract
being written at time 0.
Denote by CT the price that this option will have at expiry. Calculate the expected
value ECT .

(c) Explain the principles of non-arbitrage and equivalent portfolio.
Explain how they are used in pricing options.
Compute the price C0 of the call option described in (b) at time 0 either using
these two principles, or via implied probabilities, or otherwise.
Compare the two values, C0 and ECT , – the fair price and the expected payoff, –
and comment on any difference.
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2. (a) Define the standard N (0, 1) and general N (a, σ2) Gaussian random variables via
their densities (assume σ2 > 0).
In both cases write down their expected values, variances, and characteristic func-
tions.

(b) For the standard Gaussian random variable prove that the variance equals 1, using
integration by parts or otherwise, assuming that

∫∞
−∞

1√
2π

e−x2/2 dx = 1.

(c) The Black-Scholes formula for pricing a European call option with strike price
K = 1 and expiry T = 1 on the market with interest rate r = 3 and volatility
σ = 1 can be expressed by the following Gaussian integral,

e−3
∫ ∞

−5/2
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2 − 1)
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2π

e−x2/2 dx.

Calculate this integral in terms of the Laplace function Φ(z) :=
∫ z
−∞

1√
2π

e−x2/2 dx.

3. (a) Give the definition of a Wiener process, (Wt, t ≥ 0).
Explain the relation between a Random Walk and a Wiener process on an appro-
priate path space, using the Central Limit Theorem or otherwise.
Formulate the Central Limit Theorem.

(b) Consider a Wiener process (Wt, t ≥ 0) with its filtration (FX
t , t ≥ 0). On the

same probability space consider another random process (ft, t ≥ 0). State the
assumptions on this process required in order to define a stochastic integral Xt =∫ t
0 fs dWs.

(A) Formulate a representation for the variance of this stochastic integral using
the Riemann (non-stochastic) integral.
(B) What is the mean value of X?
If ft = f does not depend on t, verify both statements (A) and (B) above.

(c) The Black-Scholes formula for the price at time t, 0 ≤ t < 1, of the European call
option with strike price K and expiry T = 1 in a market with interest rate r has
the form,

Ct ≡ Ct(S) = SΦ
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where Φ(z) is the Laplace function,

Φ(z) =
∫ z

−∞
1√
2π

e−x2/2 dx.

Prove that for any value S > 0,

lim
t→1

Ct(S) = (S −K)+.

Explain why this limiting behaviour is expected.
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4. (a) Let (Xt, t ≥ 0) be a Markov process. Under what conditions is (Xt, t ≥ 0) a
martingale?
Formulate the Cameron - Martin - Girsanov Theorem about a Wiener process and
transformation of measure.
Using this theorem or otherwise, prove that the process (Wt − 2t, 0 ≤ t ≤ 1), is a
martingale under the new probability measure P 1.
Assume without proof that X is Markov under the new probability measure P 1.

(b) Let (Wt, 0 ≤ t ≤ 1) be a Wiener process on an appropriate path space with
probability measure P , and define a random variable γ1 = e(2W1−2). Show that

EP (γ1) = 1,

and hence or otherwise explain why γ1 may be considered as a density for some
new probability measure P 1 with respect to the original probability measure P .

(c) Calculate the stochastic differential of the process Zt = e(Wt+2t).
Using the result, or otherwise, show that

EP (Zt) > 1 for any t > 0.

5. (a) Calculate the mean value and the variance of the stochastic integral

Yt =
∫ t

0
eWs+(3s/2) dWs.

Hint: for the variance, you may use martingales, or compute some Gaussian inte-
grals.

(b) Formulate what is called a generator of a process satisfying the following linear
stochastic differential equation (SDE),

dXt = XtdWt + Xt dt, X0 = 1.

Find a solution of this equation.
Hint: the general form for the solution of a linear SDE is Xt = AeBWt+Ct with
suitable constants A,B,C.

(c) Consider the Black-Merton-Scholes model of a stock price,

St = S0e
(3/2)t+Wt , 0 ≤ t ≤ 1,

with drift µ = 3/2 and volatility σ = 1, where (Wt, 0 ≤ t ≤ 1) is a Wiener process.
Consider the European call option with expiry T = 1 and strike price K = 1.
Assume interest rate r = 1.
It can be shown that the price of such an option satisfies the following partial
differential equation,

∂u(t, x)

∂t
+

x2

2

∂2u(t, x)

∂x2
+ x

∂u(t, x)

∂x
− u(t, x) = 0, 0 ≤ t ≤ 1, u(1, x) = (x− 1)+.

With the help of a SDE representation or otherwise, compute the value u(0, 1),

leaving the answer in terms of a Gaussian integral, c
∫∞
−1/2(e

x+ 1
2 − 1) 1√

2π
e−x2/2 dx.

Compute the value c.
Hint: find the generator and solve the corresponding SDE via the Wiener process,
and, hence, get the expression for u(0, 1) via a SDE representation.
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