MATH-339501

This question paper consists of 2 printed pages, each of which is identified by the reference MATH-339501

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS Examination for the Module MATH–3395

(May/June 2005)

Dynamical Systems

Time allowed: 2 hours

Answer **four** questions. All questions carry equal marks.

1. Find all fixed points and period-two orbits of the following maps. In each case, classify the fixed points and periodic orbits as stable, unstable or undetermined. Sketch a graph of each map (including the diagonal in your sketch). Calculate the first five iterates starting from the initial condition $x_0 = 0.5$, and plot the trajectory of this initial condition as a cobweb diagram.

(a) f(x) = 3x(1-x), defined from I = [0, 1] to itself.

(b) $f(x) = \text{sgn}(x)(-1+2x^2)$, defined from I = [-1, 1] to itself, where sgn(x) = 1 if x > 0, sgn(x) = 0 if x = 0, and sgn(x) = -1 if x < 0.

(c) $f(x) = -2x + \frac{1}{3}x^3$, defined from I = [-3, 3] to itself.

Note: in (b) and (c), you need only look for period-two points x^* that satisfy $f(x^*) = -x^*$.

2. (a) Define what it means for a continuous map f(x) from an interval I to itself to have a *horseshoe*. Define what it means for a continuous map to be *topologically chaotic*. Give an example of a map that has a horseshoe, explaining carefully why it does.

(b) Suppose two maps f(x) and g(x), both from an interval I to itself, are *conjugate*, that is, there is a continuous invertible map h(x) such that f(h(x)) = h(g(x)) for all $x \in I$.

- (i) Show that if x^* is a period-*n* point of *g*, then $h(x^*)$ is a period-*n* point of *f*.
- (ii) Show that if g has a horseshoe, then f also has a horseshoe.

- **3.** (a) Define the topological entropy h(f) of a continuous map f(x).
 - (b) Prove that $h(f^m) = mh(f)$, where m is a positive integer.
 - (c) Consider the generalised shift map $S_3(x): I \to I$, defined by

 $S_3(x) = 3x \mod 1,$

where I = [0, 1). Plot $S_3(x)$ and the second iterate $S_3^2(x)$. Compute the orbit of $x_0 = \frac{1}{7}$.

- (d) Compute the topological entropy $h(S_3)$.
- 4. Suppose that a continuous map f(x) from an interval I to itself has a periodic orbit of period three. Prove that f(x) has periodic orbits of all periods, without using Sharkovsky's Theorem.
- 5. Consider the Logistic map $f(x) = \mu x(1-x)$ from I = [0,1] to I, with $0 \le \mu \le 4$.

(a) Find the fixed points of the map f and calculate their stability. Plot a bifurcation diagram of x against μ , for $0 \le \mu \le 4$, identifying clearly the bifurcation points.

(b) Sketch f(x) against x for parameter values $\mu_0 = 1$, $\mu_1 = 3$ and $\tilde{\mu}_0 = 4$, including the diagonal in your sketch and indicating clearly whether the slope of f is equal to 1 or -1 at the fixed points.

(c) Sketch $f^2(x)$ against x for $\mu_1 = 3$ and $\tilde{\mu}_0 = 4$, including the diagonal and slopes as above. Explain clearly why there must be two intermediate values of μ : $3 < \mu_2 < \tilde{\mu}_1 < 4$ such that when $\mu = \mu_2$, there is a period-doubling bifurcation from a period-two orbit, and when $\mu \ge \tilde{\mu}_1$, the map f^2 has a horseshoe. Sketch f^2 at μ_2 and $\tilde{\mu}_1$.

(d) Discuss how the ideas above help explain many features of the bifurcation diagram of the Logistic map, particularly the period-doubling cascade and the inverse period-doubling cascade.

END