MATH-322401

This question paper consists of 4 printed pages, each of which is identified by the reference MATH-3224

Only approved basic scientific calculators may be used.

©UNIVERSITY OF LEEDS

Examination for the Module MATH-3224 (January 2007)

Topology

Time allowed: 3 hours

Attempt no more than four questions. All questions carry equal marks.

- 1. (a) Define the following mathematical terms:
 - (i). A topology τ on a set X.
 - (ii). A Hausdorff topological space.
 - (iii). A closed subset of a topological space.
 - (iv). The *closure* \overline{A} of a subset A of a topological space.
 - (v). The interior A° of a subset A of a topological space.
 - (vi). The boundary ∂A of a subset A of a topological space.
 - (vii). A *continuous* map $f: X \to Y$ between topological spaces X and Y.
 - (b) Let $\sigma = \{U \subset \mathbb{R} : U \text{ is finite}\} \cup \{\emptyset, \mathbb{R}\}$. Show that σ is *not* a topology on \mathbb{R} .
 - (c) Let $\tau = \{U \subset \mathbb{R} : \text{if } 0 \in U \text{ then } U = \mathbb{R}\}.$
 - (i). Show that τ is a topology on \mathbb{R} and determine, clearly explaining your reasoning, whether (\mathbb{R}, τ) is Hausdorff.
 - (ii). Let A = (-1, 1) and B = (0, 1). Write down the closure, interior and boundary of each of these sets in (\mathbb{R}, τ) .
 - (iii). Let $f:(\mathbb{R},\tau)\to(\mathbb{R},\tau)$ be continuous with $f(0)\neq 0$. Prove that f is constant.
 - (iv). Let $g:(\mathbb{R},\tau)\to(\mathbb{R},\tau)$ be any function with g(0)=0. Prove that g is continuous.
 - (v). Let τ_* be the usual topology on $\mathbb R$ and $h:(\mathbb R,\tau)\to(\mathbb R,\tau_*)$ such that $h(x)=x^3$. Is h continuous? Carefully explain your answer.

- (a) Let (X, τ) be a topological space and A be a subset of X.
 - (i). Define the subspace topology τ_A on A.
 - (ii). Show that the inclusion map $\iota:(A,\tau_A)\to (X,\tau),\,\iota(x)=x,$ is continuous.
 - (iii). Let $X = \mathbb{R}$, τ be the usual topology on \mathbb{R} and $A = [0, 1] \cup \mathbb{Z}$. Determine, clearly explaining your reasoning, whether the following sets are open in (A, τ_A) :

$$B = \{0, 1\}, \qquad C = \{2, 3\}, \qquad D = [0, 1).$$

- (b) (i). Define the terms connected topological space and connected subset of a topological space.
 - (ii). Let X be a connected topological space, Y be a topological space and $f: X \to Y$ be a continuous map. Prove that f(X) is a connected subset of Y.
 - (iii). Let $\{A_{\lambda} : \lambda \in \Lambda\}$ be an indexed family of connected subsets of a topological space X with the property that $\bigcap A_{\lambda} \neq \emptyset$. Prove that $\bigcup A_{\lambda}$ is a connected subset of X.
 - (iv). Using the above results, prove that the unit 2-sphere

$$S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}$$

is a connected subset of \mathbb{R}^3 (with the usual topology). You may assume the following facts without proof (where \mathbb{R} , \mathbb{R}^3 have the usual topology):

- Every interval is a connected subset of \mathbb{R} .
- A function $f: Z \to \mathbb{R}^3$, $f(z) = (f_1(z), f_2(z), f_3(z))$, is continuous if each $f_i: Z \to \mathbb{R}, i = 1, 2, 3$, is continuous

(a) Define the following mathematical terms:

- (i). An *open cover* of a topological space.
- (ii). A compact topological space.
- (iii). A *compact subset* of a topological space.
- (b) Let σ_1, σ_2 be the following collections of subsets of \mathbb{R} :

$$\sigma_1 = \{(a, \infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\},$$

$$\sigma_2 = \{U \subset \mathbb{R} : \mathbb{R} \setminus U \text{ is finite}\} \cup \{\emptyset\}.$$

You are given that σ_1, σ_2 are topologies on \mathbb{R} .

- (i). Show that (\mathbb{R}, σ_1) is noncompact.
- (ii). Show that (\mathbb{R}, σ_2) is compact.
- (c) Let X be a compact topological space, Y be a topological space and $f:X\to Y$ be continuous. Prove that f(X) is a compact subset of Y.

2

- (d) Let X be a Hausdorff topological space and A be a compact subset of X. Prove that A is closed.
- (e) Let τ_* be the usual topology on \mathbb{R} and τ be any compact topology on \mathbb{R} . Let

$$f:(\mathbb{R},\tau) \to (\mathbb{R},\tau_*)$$
 such that $f(x) = \frac{1}{1+x^2}$.

Using the results of parts (c) and (d), or otherwise, show that f is not continuous.

- 4. (a) Define the following mathematical terms:
 - (i). A metric d on a set X.
 - (ii). A Cauchy sequence in (X, d).
 - (iii). A complete metric space.
 - (iv). A contraction mapping.
 - (v). A fixed point of a mapping.
 - (b) (i). Let $\varphi: X \to X$ be a contraction mapping. Prove that φ is sequentially continuous.
 - (ii). Let $\varphi: X \to X$ be a contraction mapping, $x_1 \in X$ and the sequence (x_n) be defined by $x_n = \varphi(x_{n-1})$ for all $n \geq 2$. Prove that (x_n) is Cauchy.
 - (iii). State and prove the Contraction Mapping Theorem.
 - (c) Use the Contraction Mapping Theorem to prove that the equation

$$x^4 - 2x^2 + 16x + 7 = 0$$

has one and only one solution in [-1, 1].

- 5. Determine whether each of the following statements is true or false. If the statement is true, prove it. If the statement is false, give a counterexample, explaining why it is a counterexample.
 - (a) Let X be a Hausdorff space and $f: X \to Y$ be continuous and surjective. Then Y is Hausdorff.
 - (b) For all subsets A, B of a topological space $X, \overline{A} \cap \overline{B} = \overline{A \cap B}$.
 - (c) Let A be a compact subset of a topological space X. Then A is closed.
 - (d) Let $f: X \to Y$ be continuous. Then f is sequentially continuous.
 - (e) Let A be a closed and bounded subset of a metric space (X, d). Then A is compact.
 - (f) Let A be a compact subset of a metric space (X, d). Then $X \setminus A$ is noncompact.
 - (g) Let X be a topological space, Y be a Hausdorff space, $f:X\to Y$ and $g:X\to Y$ be continuous, and

$$C = \{ x \in X : f(x) = g(x) \}.$$

Then C is closed.

4 **End.**