MATH-318101

This question paper consists of 3 printed pages, each of which is identified by the reference MATH-318101.

Only approved basic scientific calculators may be used

© UNIVERSITY OF LEEDS

Examination for the Module MATH3181 (January 2004)

Inner Product and Metric Spaces
Time allowed: 2 hours

Answer no more than FOUR questions.

1. (i) Let X be a vector space over the real numbers. State what is meant by saying that $\langle \; , \; \rangle$ is an inner-product on X

Show that neither

 $\langle \mathbf{x}, \mathbf{y} \rangle := x_1 y_1$

nor

(b) $\langle \mathbf{x}, \mathbf{y} \rangle := x_1^2 y_1^2 + x_2^2 y_2^2$

define inner products on \mathbb{R}^2 . (Here $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$.)

(ii) Let (X, \langle , \rangle) be an inner-product space. Define the norm $\|\mathbf{x}\|$ of an element $\mathbf{x} \in X$, and show that, for all $\mathbf{x}, \mathbf{y} \in X$, we have

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \, ||\mathbf{y}||.$$

By applying this inequality with a suitable inner product on $X = C[\pi/2, \pi]$ (the space of continuous functions on the interval $[\pi/2, \pi]$), show that

$$\int_{\pi/2}^{\pi} \frac{\sin t}{t} \, dt \le \frac{1}{\sqrt{\pi}} \left\{ \int_{\pi/2}^{\pi} \sin^2 t \right\}^{1/2}$$

2. (i) Let (X, \langle , \rangle) be an inner-product space. Show that, for any pair of elements $\mathbf{x}, \mathbf{y} \in X$ satisfying $(\mathbf{x}, \mathbf{y}) = 0$, we have

$$\|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

(ii) Let (X, \langle , \rangle) be an inner-product space. What is meant by saying that $\{e_1, e_2, \dots, e_n\}$ is an orthonormal set in X?

Let E be a subspace of X and let $\{e_1, e_2, \dots, e_n\}$ be an orthonormal basis of E. Show that, for $x \in E$,

$$\mathbf{x} = \sum_{j=1}^{n} \langle \mathbf{x}, \mathbf{e}_{j} \rangle \mathbf{e}_{j}$$

(iii) Let \mathbb{R}^4 have the usual inner-product, given by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{j=1}^{4} x_j y_j$$

Find an orthonormal basis of the subspace E spanned by the set of vectors $\{(1,1,1,1),(1,0,1,0),(1,1,0,1)\}$

Find the orthogonal projection of (1,1,0,0) on E

3. (i) (X, \langle , \rangle) be an inner product space, and let E be a subspace of X. Suppose that $y \in X$ and $u \in E$ satisfy the condition

$$\langle \mathbf{y} - \mathbf{u}, \mathbf{x} \rangle = 0$$
 for all $\mathbf{x} \in E$

Show that $\|\mathbf{y} - \mathbf{u}\| \le \|\mathbf{y} - \mathbf{w}\|$ for all $\mathbf{w} \in E$.

- (ii) Let (X, \langle , \rangle) be an inner product space, and let E be a subspace with a basis $\{x_1, \dots, x_n\}$. Let $y \in X$, and let $P_E(y) = k_1x_1 + \dots + k_nx_n$ be the orthogonal projection of y on E. Derive the normal equations for the real numbers k_1, \dots, k_n
- (ii) A quantity y should theoretically depend on variables s and t by means of a formula $y=a+bs^2+ct$. Find the values of the constants a, b, and c so that the formula best fits the following experimental data (in the sense of least squares approximation).

First measurement:
$$0$$
 1 5 5 5 Second measurement: 0 -1 -0.5 Third measurement: 0 -1 10 Fourth measurement: 0 -2 -1 3

- 4. (i) Let (X, d) be a metric space and let (x_n) be a sequence in X. State precisely what is meant by saying that:
 - (a) $x_n \to x \in X$, as $n \to \infty$;
 - (b) (x_n) is a Cauchy sequence;
 - (c) (X,d) is complete.
 - (ii) Prove that, if $x_n \to x$ as $n \to \infty$, then (x_n) is a Cauchy sequence
 - (iii) Let X be C[0,1], the space of continuous functions on the interval [0,1]. Let the metric d_{∞} on X be given by

$$d_{\infty}(f,g) := \max_{0 \le t \le 1} |f(t) - g(t)|$$

for $f, g \in X$

Let f be the function which is identically zero. Show that $f_n \to f$ for d_{∞} , when f_n is defined by

$$f_n(t) := \frac{t^n}{n}$$

Show that (g_n) does not converge to f in d_{∞} when g_n is defined by

$$g_n(t) := t^n(1 - t^n)$$

Hence or otherwise show that (g_n) is not a Cauchy sequence for d_{∞} .

- 5. (i) Define what is meant by a contraction mapping on a metric space (X, d) and state the Contraction Mapping Theorem
 - (ii) Let the differential equation

)

$$\frac{dy}{dt} = F(t, y)$$
 with initial condition $y(a) = c$

satisfy the conditions F is continuous and

$$|F(t, y_1) - F(t, y_2)| \le \frac{k}{b-a} |y_1 - y_2|$$

for all $t \in [a, b]$ and all $y_1, y_2 \in \mathbb{R}$. Show that there is a unique function $f \in C[a, b]$ such that f is a solution of the differential equation with the given initial condition. Hence show that the differential equation

$$\frac{dy}{dt} = t \sin t - t^2 y \qquad \text{with initial condition } y(0) = 1$$

has precisely one solution on any interval [0, b], where 0 < b < 1.

END