MATH-318101

This question paper consists of 2 printed pages, each of which is identified by the reference MATH-318101

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH3181 (May-June 2003)

Inner Product and Metric Spaces

Time allowed: 2 hours

Answer no more than FOUR questions

1. (i) Let X be a vector space over the real numbers. State what is meant by saying that \langle , \rangle is an *inner product* on X.

Let C[0,1] denote the space of continuous real-valued functions on the closed interval [0,1] of the real line

Show that

$$\langle f, g \rangle := \int_0^{1/2} f(t)g(t) dt$$

is not an inner product on C[0,1].

(ii) Let (X, \langle , \rangle) be an inner-product space. Define the norm $\|\mathbf{x}\|$ of an element $\mathbf{x} \in X$, and show that, for all $\mathbf{x}, \mathbf{y} \in X$, we have

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \, ||\mathbf{y}||_{-1}$$

Deduce that $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

Let \mathbb{R}^2 have the standard inner product, given by

$$\langle \mathbf{x}, \mathbf{y} \rangle := x_1 y_1 + x_2 y_2 .$$

Find elements $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ such that

$$\|\mathbf{x} + \mathbf{y}\|^2 > \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

- 2 Let (X, \langle , \rangle) be an inner-product space.
 - (i) Show that, for any $\mathbf{x}, \mathbf{y} \in X$,

$$||2\mathbf{x} + 3\mathbf{y}||^2 + ||3\mathbf{x} - 2\mathbf{y}||^2 = 13(||\mathbf{x}||^2 + ||\mathbf{y}||^2)$$

(ii) State what is meant by saying that elements $\mathbf{x}, \mathbf{y} \in X$ are orthogonal. Show that, for any pair of orthogonal elements $\mathbf{x}, \mathbf{y} \in X$, we have

$$\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$

and deduce that, if $z \in X$ is also orthogonal to both x and y, then

$$\|\mathbf{x} + \mathbf{y} + 2\mathbf{z}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 + 4\|\mathbf{z}\|^2$$

(iii) Let C[-1,1] be the space of continuous real-valued functions on the closed interval [-1,1] of the real line. With the inner product $\langle f,g\rangle:=\int_{-1}^1 f(t)g(t)\,dt$, show that the functions f and g defined by $f(t):\equiv 1$ and g(t):=t are orthogonal. Find values of a and b such that the function h defined by $h(t):=t^2+at+b$ is orthogonal to f and g

- 3. (i) Let (X, \langle , \rangle) be an inner product space, let E be a vector subspace, and let $\mathbf{y} \in X$. Let $P_E(\mathbf{y}) \in E$ satisfy $\langle \mathbf{y} P_E(\mathbf{y}), \mathbf{x} \rangle = 0$ for all $\mathbf{x} \in E$. Show that, if $\mathbf{y} \in E$, then $P_E(\mathbf{y}) = \mathbf{y}$.
 - (ii) Let (X, \langle , \rangle) be an inner product space and let E be a subspace with a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ Let $\mathbf{y} \in X$, and let $P_E(\mathbf{y}) = a_1\mathbf{x}_1 + \dots + a_n\mathbf{x}_n$. Derive the normal equations for the real numbers a_1, \dots, a_n .

Deduce that if the basis is orthonormal, then $P_E(\mathbf{y}) = \sum_{j=1}^n \langle \mathbf{y}, \mathbf{x}_j \rangle \mathbf{x}_j$

(iii) A quantity y should theoretically depend on a variable x by means of a formula $y = a + bx + cx^2$. Find the values of the constants a, b, and c, so that the formula best fits the following experimental data (in the sense of least squares approximation)

First measurement: $\begin{pmatrix} x & y \\ 1 & 3 & 2 \\ \text{Second measurement:} & -1 & 1 & 1 \\ \text{Third measurement:} & 2 & 2 & 8 \\ \text{Fourth measurement:} & -2 & 6 & 9 \\ \end{pmatrix}$

- Let (X, d) be a metric space and let (x_n) be a sequence in X. State precisely what is meant by saying that:
 - (a) $x_n \to x \in X$, as $n \to \infty$;
 - (b) (x_n) is a Cauchy sequence;
 - (c) (X,d) is complete.
 - (i) Prove that, if $x_n \to x$ as $n \to \infty$, then (x_n) is a Cauchy sequence.
 - (ii) Prove also that if $x_n \to x$ and $x_n \to y$ as $n \to \infty$, then x = y
 - (iii) Let \mathbb{R}^2 have the metric $d_1(\mathbf{x}, \mathbf{y}) = |x_1 y_1| + |x_2 y_2|$. Show that if the sequence $\mathbf{x}_n \to \mathbf{x}$ then the two sequences of co-ordinates $(x_{n,1})$ and $(x_{n,2})$ converge in \mathbb{R} (with the standard metric).
 - (iv) Let X be an arbitrary set and let d be the discrete metric on X defined by

$$d(x,y) := \begin{cases} 1, & \text{if } x \neq y; \\ 0, & \text{if } x = y. \end{cases}$$

Show that (X, d) is complete.

- 5. (i) Let $\phi: X \to X$ be a mapping on a metric space (X, d). Define what is meant by saying that ϕ is a contraction mapping.
 - (ii) State and prove the Contraction Mapping Theorem for a complete metric space (X, d)
 - (iii) Show that the equation

$$x^4 - 2x^3 + 2 = 3x$$

has precisely one solution in the interval [0, 1].