MATH-304401

This question paper consists of 3 printed pages, each of which is identified by the reference MATH-304401.

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-3044 (May/June 2005)

Number Theory

Time allowed : 3 hours

Do not answer more than **four** questions All questions carry equal marks

- 1. (a) Find the gcd (3278, 4321), and write it in the form 3278s + 4321t, where s and t are integers.
 - (b) Use the arithmetic of congruences to show that $2^{68} + 5$ is divisible by 83.
 - (c) Beginning with the identity $641 = 5 \times 2^7 + 1$, show that 641 is a factor of $2^{32} + 1$.
 - (d) Show that the number $n^5 + 1$ is never prime for n > 1.

(e) State Fermat's little theorem, and use it to show that if p is a prime divisor of $a^r - 1$, where $a, r \in \mathbb{Z}, a > 1$ and r > 1, then $p|a^d - 1$, where d = (p - 1, r).

Now suppose that an odd prime p divides $3^{53} - 1$; by listing the possibilities for d show that $p \ge 107$.

2. (a) State the results which describe exactly which numbers n can be written as the sum of m integer squares for m = 2, 3 and 4.

Show that all perfect squares are congruent to 0, 1 or 4 mod 8, and hence prove directly that no number of the form 8k + 7 is the sum of three squares.

For each of the following numbers, find the least m for which it is the sum of m squares:

(i) 3×2^{10} ; (ii) 7^{15} ; (iii) 5^{15} .

(b) Suppose that $m = a^2 + b^2$ and $n = c^2 + d^2$ are two integers expressible as a sum of two squares. Write down an expression for mn as the sum of two squares. Hence express the number 1517 (= 37×41) as the sum of two squares of positive integers in two different ways.

(c) What is a *primitive Pythagorean triple*? Show that, if a and b are two coprime positive integers with a > b, of which one is even, then $(a^2-b^2, 2ab, a^2+b^2)$ is a primitive Pythagorean triple.

Find two primitive Pythagorean triples that include 20 as a member.

3. (a) Define Euler's ϕ function. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$, where p_1, p_2, \dots, p_m are the distinct prime numbers dividing n. Give a formula for $\phi(n)$ in terms of the p_i .

Hence calculate $\phi(600)$.

(b) State the theorem of Euler that generalizes Fermat's little theorem, and use it to calculate the last two decimal digits of 109^{129} .

(c) Let n be an integer with $n \ge 2$. Define the term *primitive root of* n.

Find all the primitive roots of 14.

State a theorem of Gauss that describes which numbers have primitive roots, and use it to determine which of the numbers 26, 27 and 28 have primitive roots.

(d) Prove that $\phi(n)$ is even whenever n > 2.

Suppose that n = uv, where (u, v) = 1 and u, v > 2. Show that, for all a with (a, n) = 1, we have $a^{\phi(n)/2} \equiv 1 \mod n$, and deduce that n has no primitive roots.

4. (a) Suppose that a, b > 1 and (a, b) = 1. What is meant by saying that a is a *quadratic* residue modulo b? List all the quadratic residues modulo 19.

(b) For p an odd prime number and a an integer coprime to p define the Legendre symbol $\left(\frac{a}{p}\right)$, and state the law of quadratic reciprocity.

Show that 5 is a quadratic residue modulo a prime p > 5 if and only if $p \equiv 1$ or 4 mod 5.

By considering an expression of the form $4(p_1p_2...p_n)^2 - 5$, or otherwise, deduce that there are infinitely many primes congruent to 4 mod 5.

(c) Determine whether or not the congruence $x^2 \equiv 35 \pmod{1237}$ has a solution. (You may assume the fact that 1237 is a prime number.)

(d) State Euler's criterion, and use it to show that if q = 2n+1 is prime and 2 is a quadratic residue modulo q, then $q|2^n - 1$. Deduce that $2^{23} - 1$ is composite.

5. (a) Define the set of *Gaussian integers*, $\mathbb{Z}[i]$. Explain the terms *unit* and *prime* as applied to the elements of $\mathbb{Z}[i]$.

What is the *norm*, $N(\alpha)$, of a Gaussian integer α ? Show that $N(\alpha\beta) = N(\alpha)N(\beta)$ when α and β are Gaussian integers. Prove that there are just four units in $\mathbb{Z}[i]$.

Suppose that a positive integer p is a prime in the usual sense but is not a prime in $\mathbb{Z}[i]$. Show that there is an element $\alpha \in \mathbb{Z}[i]$ with $N(\alpha) = p$. Deduce that p can be written as the sum of two integer squares.

(b) Show that $\sqrt{18} = [4; \overline{4, 8}]$, and hence derive two solutions in positive integers to the Pell equation $x^2 - 18y^2 = 1$.

(c) Let p and q be distinct odd primes, and let e be a positive integer with (e, (p-1)(q-1)) = 1. A number x with (x, pq) = 1 is encoded by the formula $E(x) \equiv x^e \mod pq$. Explain how to find a positive integer d such that, when a number is decoded by the formula $D(y) \equiv y^d \mod pq$, then $D(E(x)) \equiv x \mod pq$. Justify your answer using a theorem of Euler.

END