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Answer FOUR of the FIVE questions.

All questions carry equal marks.

1. Explain what is meant by a particle path and a streamline. Under what circumstances are
these the same?

A two-dimensional flow is given by the velocity field

u = (x (1 + t) , y)

Find the particle paths(x(t), y(t)) for this flow for the particle at(1, 1) at t = 0. Hence
show thaty(1) = e−

1

2x(1). Find and sketch the streamline that passes through the point
(1, 1) at t = 0.

Calculate∇·u for this flow and hence show that the flow isnot incompressible.

Write down the formula for the acceleration of a fluid particle, and hence calculate the fluid
acceleration at a general point(x, y) at timet.

2. State the conditions under which the fluid velocity may be written as the gradient of a ve-
locity potential,φ. Show that, whenφ exists and the flow is incompressible,φ satisfies
Laplace’s equation.

Separable solutions of Laplace’s equation exist in plane-polar co-ordinates(r, θ) of the form
φ(r, θ) = f(r) cos(θ). Find the general solutions forf(r).

Hence show that the potential given by

φ(r, θ) =

(

Ur +
Ua2

r

)

cos θ

represents the unique potential for flow around a cylinder ofradiusa with uniform flowU in
the x-direction atx = ±∞ . (Hint: show that this potential does satisfy Laplace’s equation
and the required boundary conditions on the surface of the cylinder and at infinity.)
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Show that

uθ = −U
(

1 +
a2

r2

)

sin θ.

By integrating this around a circle of radiusb > a show that the circulation around the
cylinder

Γ =

∮

u · dx

is zero.

3. Define the vorticityω of a fluid with velocity u. Show that for two-dimensional incom-
pressible flows whereu = (u, v, 0) is independent ofz

ω =
(

0, 0,−∇2ψ
)

(1)

whereψ is the streamfunction that you should relate tou andv .

Consider the flowu = urr̂ + uθθ̂ in cylindrical polars(r, θ, z) where

ur =
Ua2

r2
cos θ, uθ =

Ua2

r2
sin θ,

Calculateω and the streamfunctionψ and verify the relationship derived in equation (1).

Starting from Euler’s equation in the form

∂u

∂t
+ u·∇u = −1

ρ
∇p,

derive the vorticity equation

∂ω

∂t
+ u · ∇ω = ω · ∇u.

Hence show that the vorticity of a fluid element does not change as it moves in a planar flow.

4. Starting from Euler’s equation in the form

∂u

∂t
+ u·∇u = −1

ρ
∇p+ g

show that for a steady flow
p

ρ
+ gz +

1

2
u2

is constant along a streamline, wherez is the upward vertical coordinate. (You may quote
any of the vector identities at the end of the examination paper).

Show, in addition, that for a steady irrotational flow (ω = 0) that

p

ρ
+ gz +

1

2
u2
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Figure 1: Section of the pipe for Question 4

is constant everywhere in the flow.

An axisymmetric vertical pipe of variable cross-section (as shown in Figure 1) is filled with
water. The cross-section is given byr = a(coshαz)

1

4 , wherea andα are positive constants,
(r, θ, z) are cylindrical polar co-ordinates with thez -axis vertical, and gravity acting down-
wards sog = (0, 0,−g). The water is incompressible and is in steady irrotational flow along
the pipe, with a volumeQ of fluid passing every cross-section per unit time. Assumingthat
the vertical component of velocityuz depends onz only and that horizontal velocities are
small and can be neglected, calculateuz as a function ofz .

Hence or otherwise show that the water pressure will not be a monotonic function ofz if

αQ2 > 4π2a4g.

5. Water flows in thex-direction in a long channel of rectangular cross-section,whose base
lies on the planez = 0 except for a small smooth hump whose maximum height isdm . The
equation of the hump isz = d(x). The flow is steady and smooth throughout the channel.
Far upstream of the hump the flow has velocityU and the surface of the water lies atz = H .
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Calculate the level of the water surface above the bump (denoted δ(x), whereδ(x) is the
height of the water above the value it would assume if there were no bump) whenH ≫ dm

demonstrating that it is given by the equation

δ =
U2

2g

(

1 −
(

H

H + δ − d

)2
)

.

Show that for smalld andδ the surface may rise or fall as it flows over the bump depending

upon the value of the upstream Froude number,F =
U√
gH

.

Hint: you may use the expansion

(

H

H + δ − d

)2

≈ 1 − 2(δ − d)

H
.

Far downstream of the hump the water level is at height7H/16. Show that the upstream

Froude number,F , must be equal to
(

49

184

)1/2

, and find the value far downstream. At what
point is the Froude number equal to unity?
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Formulae Sheet

Useful Vector Identities

∇×∇p = 0,

∇· (∇× u) = 0,

∇· (pu) = p∇·u + u·∇p,
∇× (pu) = p∇× u + ∇p× u,

∇× (B × A) = A·∇B −B·∇A + A∇·B −B∇·A,
∇· (A × B) = B·∇ × A− A·∇ × B,

∇ (A·B) = A × (∇× B) + B × (∇× A) + A·∇B + B·∇A,

∇2
u = ∇ (∇·u) −∇× (∇× u) ,

(∇× u) × u = u·∇u −∇
(

1

2
u

2
)

.

Cartesian coordinates

Scalarp, vectoru = uex + vey + wez

gradp = ∇p =
∂p

∂x
ex +

∂p

∂y
ey +

∂p

∂z
ez,

divu = ∇·u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
,

curlu = ∇× u =

(

∂w

∂y
− ∂v

∂z

)

ex +

(

∂u

∂z
− ∂w

∂x

)

ey +

(

∂v

∂x
− ∂u

∂y

)

ez,

u·∇p = u
∂p

∂x
+ v

∂p

∂y
+ w

∂p

∂z
,

∇2p =
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
,

u·∇u =

(

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

ex +

(

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

ey

+

(

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

ez
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Cylindrical Polar Coordinates

u = uer + veθ + wez

∇p =
∂p

∂r
er +

1

r

∂p

∂θ
eθ +

∂p

∂z
ez,

∇·u =
1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+
∂w

∂z
,

∇× u =

(

1

r

∂w

∂θ
− ∂v

∂z

)

er +

(

∂u

∂z
− ∂w

∂r

)

eθ +
1

r

(

∂

∂r
(rv) − ∂u

∂θ

)

ez,

u·∇p = u
∂p

∂r
+
v

r

∂p

∂θ
+ w

∂p

∂z
,

∇2p =
1

r

∂

∂r

(

r
∂p

∂r

)

+
1

r2

∂2p

∂θ2
+
∂2p

∂z2
.

Spherical Polar Coordinates

u = uer + veθ + weφ

∇p =
∂p

∂r
er +

1

r

∂p

∂θ
eθ +

1

r sin θ

∂p

∂φ
eφ,

∇·u =
1

r2

∂

∂r

(

r2u
)

+
1

r sin θ

∂

∂θ
(v sin θ) +

1

r sin θ

∂w

∂φ
,

∇× u =
1

r sin θ

(

∂

∂θ
(w sin θ) − ∂v

∂φ

)

er +
1

r

(

1

sin θ

∂u

∂φ
− ∂

∂r
(rw)

)

eθ

+
1

r

(

∂

∂r
(rv) − ∂u

∂θ

)

eφ,

u·∇p = u
∂p

∂r
+
v

r

∂p

∂θ
+

w

r sin θ

∂p

∂φ
,

∇2p =
1

r2

∂

∂r

(

r2
∂p

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂p

∂θ

)

+
1

r2 sin θ

∂2p

∂φ2
.

Divergence Theorem and Stokes Theorem

Let V be a region bounded by a simple closed surface S with unitoutward normaln
∫

S

u·ndS =

∫

V

∇·udV,

∫

S

pndS =

∫

V

∇pdV,
∫

S

u × ndS = −
∫

V

∇× udV.

Let C be a simple closed curve spanned by a surface S with unit normal n
∫

C

u·dx =

∫

S

(∇× u) ·ndS,

∫

C

pdx = −
∫

S

(∇p) × ndS.
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