MATH245001

This question paper consists of 3 printed pages, each of which is identified by the reference **MATH2450**.

Only approved basic scientific calculators may be used

©UNIVERSITY OF LEEDS

Examination for the Module MATH2450 (January 2008)

Mathematics for Geophysical Sciences 3

Time allowed: 2 hours

Do not attempt more than 4 questions. All questions carry equal weight.

1. A and B are the 3×3 matrices

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 4 & -2 \\ -3 & 1 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 2 & 2 \\ -2 & 1 & 6 \\ 2 & 4 & -5 \end{pmatrix}$$

Calculate

- (i) 2A + B and A 3B.
- (ii) the products AB and BA.
- (iii) the transpose matrices A^T and B^T .
- (iv) the traces tr(A), tr(B), tr(AB) and tr(BA).
- (v) the determinants det(A), det(B) and det(AB). Verify for this case that det(AB) = det(A)det(B).
- 2. (a) Find the inverse of the 3×3 matrix

$$C = \left(\begin{array}{rrr} 1 & -1 & 2 \\ 2 & 3 & 0 \\ -2 & 0 & -4 \end{array}\right)$$

1

(b) Show, without directly expanding the determinant, that

$$\begin{vmatrix} 1 & a & a^3 \\ 1 & b & b^3 \\ 1 & c & c^3 \end{vmatrix} = (b-a)(c-a)(c-b)(a+b+c)$$

3. (a) Find the eigenvalues and corresponding eigenvectors of the 2×2 matrix

$$D = \left(\begin{array}{cc} 1 & 5 \\ 2 & 4 \end{array}\right)$$

Hence find a a transformation matrix P for which $P^{-1}DP = \Lambda$, where Λ is a diagonal matrix.

- (b) Show that the matrix D satisfies its characteristic polynomial.
- (c) Show that the 2×2 matrix

$$G = \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right)$$

is orthogonal. Verify that det(G) = 1 and show that the eigenvalues are

$$\lambda = \frac{1 \pm i}{\sqrt{2}}$$

4. (a) For $\phi = 2x^2y + 5xy^2 - 7y^2z^2$

find

- (i) $\nabla \phi$
- (ii) the directional derivative at (1, 1, 1) in the direction (1, 2, -1).
- (iii) Find the tangent plane to the surface

$$2x^2y + 5xy^2 - 7y^2z^2 = -4$$

at the point (1, 2, 1).

(b) For
$$\mathbf{q} = (x^2z, -xy^2, xyz)$$

find div \mathbf{q} and curl \mathbf{q} and verify that div(curl \mathbf{q}) = 0.

- 5. (a) For the scalar field $\phi = x^2y^2z$ and the vector field $\mathbf{p} = (xy, xyz, 2xz^2)$, verify that
 - (i) $\operatorname{div}(\phi \mathbf{p}) = \phi \operatorname{div} \mathbf{p} + \mathbf{p} \cdot \nabla \phi$
 - (ii) $\operatorname{curl}(\phi \mathbf{p}) = \nabla \phi \times \mathbf{p} + \phi \operatorname{curl} \mathbf{p}$
 - (b) Show that the parabolic cylinder co-ordinates (u, v, w) given in terms of the cartesian co-ordinates (x, y, z) by

$$x = \frac{1}{2}(u^2 - v^2), \quad y = uv, \quad z = w$$

are orthogonal and find the corresponding h_1 , h_2 , h_3 .

6. (a) Evaluate the line integral $\int_A^B \mathbf{q}.d\mathbf{r}$, where

$$\mathbf{q} = (xy, \, 2xy, \, z^2)$$

around the positive quadrant of the circle $x^2 + y^2 = a^2$ given by

$$x = a \cos t$$
, $y = a \sin t$, $z = 0$, $0 \le t \le \frac{\pi}{2}$

from the point A = (a, 0, 0) to the point B = (0, a, 0).

(b) Calculate the surface flux integral $\int_{\mathcal{S}} \mathbf{q}.\mathbf{n} \, dS$ and the volume integral $\int_{\mathcal{V}} \operatorname{div} \mathbf{q} \, dV$ where

$$\mathbf{q} = (x, y, 0)$$

where \mathcal{V} is the sphere $x^2+y^2+z^2=a^2$, given in spherical polar co-ordinates by $x=r\sin\theta\cos\lambda,\quad y=r\sin\theta\sin\lambda,\quad z=r\cos\theta,\qquad 0\leq r\leq a,\; 0\leq\theta\leq\pi,\; 0\leq\lambda\leq2\pi$ and \mathcal{S} is the surface of this sphere, with outward normal \mathbf{n} .

Hence verify for this example that the Divergence Theorem holds.

END