MATH243101

This question paper consists of 3 printed pages, each of which is identified by the reference MATH2431.

Only approved basic scientific calculators may be used

©UNIVERSITY OF LEEDS

Examination for the Module MATH2431 (May/June 2004)

Fourier Series, Partial Differential Equations and Transforms

Time allowed: 2 hours

Do not attempt more than 4 questions. All questions carry equal weight.

1. Any piecewise smooth function f(x) on $-\ell < x < \ell$ can be represented by the Fourier series

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{\ell}\right) + b_n \sin\left(\frac{n\pi x}{\ell}\right) \right].$$

Give the formulae for calculating the constants a_n and b_n for a given function f.

State what is meant by an *odd* function and show that, for an odd function, the a_n are all zero.

Determine the Fourier series for the function

$$f(x) = x$$
 on $-\ell < x < \ell$.

Explain why your Fourier series has the value zero at $x = \ell$ even though $f(\ell) \neq 0$.

Use your Fourier series for f(x) to establish the result that

$$\sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)} = \frac{\pi}{4}.$$

2. It is required to solve the steady heat conduction equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

in the square region 0 < x < a, 0 < y < a, subject to the boundary conditions

$$u = 0$$
 on $x = 0$ and $x = a$ $(0 < y < a)$,
 $u = 0$ on $y = 0$ $(0 < x < a)$,
 $u = 1$ on $y = a$ $(0 < x < a)$.

Show, using the method of separation of variables, that the solution which satisfies the conditions on x = 0, x = a and on y = 0 can be expressed as

$$u(x,y) = \sum_{n=1}^{\infty} B_n \sinh(\frac{n\pi y}{a}) \sin(\frac{n\pi x}{a})$$

for constants B_n .

Show how the boundary condition on y = a can be used to determine the B_n . Hence find the B_n .

3. Small transverse vibrations of a uniform string of line density ρ_0 and length ℓ , stretched to a tension T_0 , are described by solutions u(x,t) of the wave equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} \qquad (\text{with } c = \sqrt{\frac{T_0}{\rho_0}})$$

on $0 < x < \ell$, t > 0, subject to the boundary conditions

$$u = 0$$
 at $x = 0$ and $x = \ell$ $(t > 0)$,

Show that this boundary-value problem has the general solution

$$u(x,t) = \sum_{n=1}^{\infty} \left[C_n \cos \left(\frac{n\pi ct}{\ell} \right) + D_n \sin \left(\frac{n\pi ct}{\ell} \right) \right] \sin \left(\frac{n\pi x}{\ell} \right).$$

Explain how the constants C_n and D_n can be determined if u also satisfies the initial conditions

$$u = f(x),$$
 $\frac{\partial u}{\partial t} = g(x)$ at $t = 0$ $(0 < x < \ell)$.

Find the constants C_n and D_n in the case when the string is initially at rest (g(x) = 0) and is given an initial displacement

$$u(x,0) = f(x) = \frac{u_0}{\ell^2} x(\ell - x).$$

4. Define the Fourier transform $F[f] = \overline{f}(\omega)$ of the function f(x), and express the Fourier transform of $\frac{d^2f}{dx^2}$ in terms of F[f].

Show that the Fourier transform of

$$f(x) = e^{-a|x|}$$
 (where a is a positive real constant)

is

$$\overline{f}(\omega) = \frac{2a}{a^2 + \omega^2}.$$

State the Inversion Formula for Fourier transforms.

Use Fourier transforms to solve the problem

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

on $-\infty < x < \infty$, $t \ge 0$, subject to the conditions

$$u = e^{-|x|}$$
 at $t = 0$ $(-\infty < x < \infty)$, $u \to 0$ as $|x| \to \infty$ $(t > 0)$.

By noting that the Fourier transform of the solution is an even function of ω , obtain the solution as a real integral with respect to ω .

5. (i) Write down an expression for $\bar{f}(p)$, the Laplace transform of a function f(t) defined for t > 0.

Establish the results that
$$\mathcal{L}\left[\frac{df}{dt}\right] = p\bar{f}(p) - f(0)$$
 and $\mathcal{L}\left[\frac{d^2f}{dt^2}\right] = p^2\bar{f}(p) - pf(0) - f'(0)$.

Find the Laplace transform of the function $f(t) = e^{at}$ (where a is a real constant).

Establish the result that $\mathcal{L}[tf(t)] = -\frac{d\overline{f}}{dp}$, and use this result to find the Laplace transform of $f(t) = t e^{at}$.

(ii) x(t) is defined to be the solution to the initial-value problem

$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^{2t} \qquad (t > 0),$$

$$x = 1$$
, $\frac{dx}{dt} = 0$ at $t = 0$.

Show that its Laplace transform is

$$\overline{x}(p) = \frac{p^2 - 4p + 5}{(p-1)^2(p-2)}.$$

Resolve this expression into partial fractions and hence find x(t).

END