MATH243101

This question paper consists of 3 printed pages, each of which is identified by the reference **MATH2431**.

Only approved basic scientific calculators may be used

©UNIVERSITY OF LEEDS

Examination for the Module MATH2431 (May/June 2003)

Fourier Series, Partial Differential Equations and Transforms

Time allowed: 2 hours

Do not attempt more than 4 questions. All questions carry equal weight.

1. Find the Fourier series for the function

$$f(x) = x^2$$

on the interval $-\ell < x < \ell$.

Sketch the graph of the function represented by the series on the range $-3\ell < x < 3\ell$. By putting x = 0 in your series, show that

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}.$$

2. Show that the general solution to the heat conduction equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

on $0 < x < \ell$, t > 0, subject to the boundary conditions

$$u = 0$$
 at $x = 0$ and $x = \ell$ $(t > 0)$,

is

$$u(x,t) = \sum_{n=1}^{\infty} B_n e^{-\frac{n^2 \pi^2}{\ell^2} t} \sin\left(\frac{n\pi x}{\ell}\right).$$

Determine the constants B_n in the case when u also satisfies the initial condition

$$u = \frac{u_0}{\ell}(\ell - x)$$
 at $t = 0$ $(0 < x < \ell)$,

where u_0 is a constant.

3. Given that the general solution to the wave equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

on $0 < x < \ell$, t > 0, subject to the boundary conditions

$$u = 0$$
, at $x = 0$ and $x = \ell$ $(t > 0)$,

is

$$u(x,t) = \sum_{n=1}^{\infty} \left[A_n \cos\left(\frac{n\pi ct}{\ell}\right) + B_n \sin\left(\frac{n\pi ct}{\ell}\right) \right] \sin\left(\frac{n\pi x}{\ell}\right),$$

indicate how the constants A_n and B_n can be determined if u also satisfies the initial conditions

$$u = f(x),$$
 $\frac{\partial u}{\partial t} = g(x)$ at $t = 0$ $(0 < x < \ell)$.

Find the constants A_n and B_n in the case when initially u = 0 and

$$\frac{\partial u}{\partial t} = \begin{cases} 0 & (0 < x < \frac{\ell}{3}) \\ v_0 & (\frac{\ell}{3} < x < \frac{2\ell}{3}) \\ 0 & (\frac{2\ell}{3} < x < \ell), \end{cases}$$

where v_0 is a constant.

Given that u is the small, transverse displacement of a uniform stretched string of length ℓ and line density ρ_0 , show that the total energy E in the oscillations is $E = \frac{\rho_0 V_0^2 \ell}{6}$. Find the energy E_1 in the first mode and show that this represents approximately 61% of the total energy.

4. Define the Fourier transform F[f] of the function f(x). Use this result to express the Fourier transform of $\frac{d^2f}{dx^2}$ in terms of F[f].

Show that the Fourier transform of

$$f(x) = e^{-ax^2}$$
 (where a is a positive real constant)

is

$$\overline{f}(\omega) = \sqrt{\frac{\pi}{a}} e^{-\omega^2/4a}.$$

State the Convolution Theorem for Fourier transforms.

Use Fourier transforms and the Convolution Theorem to solve the problem

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

on $-\infty < x < \infty$, $t \ge 0$, subject to the conditions

$$u = f(x)$$
 at $t = 0$ $(-\infty < x < \infty)$,
 $u \to 0$ as $|x| \to \infty$ $(t > 0)$.

You should leave your result as an integral.

5. (i) Write down an expression for $\bar{f}(p)$, the Laplace transform of a function f(t) defined for t > 0.

Establish the result that $\mathcal{L}\left[\frac{df}{dt}\right] = p\bar{f}(p) - f(0)$.

Find the Laplace transform of the function $f(t) = e^{at}$ (where a is a real constant).

(ii) Use Laplace transforms to find x(t), where x(t), y(t) satisfy the initial-value problem

$$\dot{x} = \frac{7}{3}x + \frac{8}{3}y,
\dot{y} = \frac{1}{3}x + \frac{5}{3}y,$$

subject to the initial conditions that

$$x(0) = 3, \quad y(0) = 0.$$

END