MATH236001

This question paper consists of 3 printed pages, each of which is identified by the reference MATH2360

Only approved basic scientific calculators may be used

© UNIVERSITY OF LEEDS

Examination for the Module MATH2360 (January 2002)

VECTOR CALCULUS AND APPLICATIONS

Time allowed: 2 hours

Do not attempt more than FOUR questions. All questions carry equal weight.

1. (i) Show that the vector field

$$F(x, y, z) = (y + e^{x+z^2}, x, 2ze^{x+z^2})$$

obeys $\nabla \times \mathbf{F} = 0$, and find a corresponding potential field φ , such that $\mathbf{F} = \nabla \varphi$. What can you conclude about the line integral

$$\int_{P}^{Q} \boldsymbol{F} \cdot d\boldsymbol{r} ?$$

Evaluate the integral over an arbitrary curve from $P = (1, 1, \sqrt{2})$ to $Q = (1, 2, \sqrt{3})$.

(ii) Consider the surface given by

$$\varphi(x, y, z) = x^2 \ln x + y^{3/2} + z - 1 = 0.$$

Find $\nabla \varphi$ and calculate the unit normal vector to the surface at the point (1,4,3).

(iii) Sketch the region of integration for the integral

$$I = \int_0^1 \int_{x^2}^1 x^3 \left(1 + y^3\right)^{1/5} dy dx.$$

Evaluate I by interchanging the order of integration.

2. (i) Let F(x, y, z) be the vector field $F = (y \sin x, \cos^2 z, x^{3/2})$ and $\varphi(x, y, z)$ be the scalar field $\varphi = (x - y)^2 + z$.

Calculate $\nabla \varphi$, $\nabla \times \mathbf{F}$, $(\mathbf{F} \cdot \nabla)\varphi$ and $(\mathbf{F} \cdot \nabla)\mathbf{F}$.

(ii) Show, using suffix notation techniques or otherwise, that for an arbitrary vector field G

$$\nabla \times (\nabla \times G) = \nabla (\nabla \cdot G) - \nabla^2 G.$$

Verify this formula, taking G to be the vector F of part (i).

3. (i) Calculate the integral

$$\oint_C \boldsymbol{v} \cdot d\boldsymbol{r},$$

where $\mathbf{v} = (x^2 - z^2, x^3 - zy, xy^2)$, in which the contour C is the circle $x^2 + y^2 = 1$ in the plane z = 0 traversed in an anti-clockwise direction.

Hint: You may assume that

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}, \quad \cos^4 \theta = \frac{3}{8} + \frac{\cos 2\theta}{2} + \frac{\cos 4\theta}{8}.$$

(ii) Evaluate

$$\iint\limits_{S} (\boldsymbol{\nabla} \times \boldsymbol{v}) \cdot d\boldsymbol{S},$$

where S is the conical surface given by $(x^2 + y^2)^{1/2} + z = 1$ $(0 \le z \le 1)$ and v is the same as in (i).

- (iii) State Stokes' Theorem and verify it in this case by comparing the results of (i) and (ii).
- 4. (i) Calculate directly the surface integral

$$I = \iint_{S} \mathbf{F} \cdot d\mathbf{S},$$

where $\mathbf{F} = (x - y, y + x, x^2 + y^2)$ and S is the paraboloid given by $x^2 + y^2 + z = 4$, with $0 \le x \le 2, 0 \le y \le 2, 0 \le z \le 4$.

(ii) Calculate $\nabla \cdot F$, where F is defined as in (i), and then calculate

$$J = \iiint\limits_{V} (\boldsymbol{\nabla} \cdot \boldsymbol{F}) \, dV,$$

where V is the volume enclosed by the paraboloid in section (i) and the disk given by $x^2+y^2 \le 4$, z=0.

(iii) State the Divergence theorem and compare the results of questions (i) and (ii) to show that it is verified in the above case.

Hint: Remember to add in the contribution from the disk in the xy-plane, which together with the paraboloid, forms the closed surface for the volume in part (ii).

5. (i) Calculate

$$\oint_{C} f(x, y, z) \, ds,$$

where s is the arc length parameter, $f((x, y, z) = x y^{1/2} (1 - 2xz) + 2 (1 - 2x^2)^{1/4} x^3$, and C is the closed curve given by $x = \frac{\sin t}{\sqrt{2}}$, $y = \cos t$ and $z = \frac{\sin t}{\sqrt{2}}$.

(ii) By means of the transformation $x = ar \cos \theta$, $y = br \sin \theta$, evaluate

$$\iint\limits_{\Omega} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^{5/4} dy dx,$$

where \Re denotes the region bounded by the ellipse $x^2/a^2 + y^2/b^2 = 1$.

(iii) Oblate spheroidal coordinates (ξ, η, ϕ) are related to Cartesian coordinates (x, y, z) via the relations

$$x = a \cosh \xi \cos \eta \cos \phi,$$

$$y = a \cosh \xi \cos \eta \sin \phi,$$

$$z = a \sinh \xi \sin \eta,$$

where a is a constant and $\xi \ge 0, -\frac{\pi}{2} \le \eta \le \frac{\pi}{2}, 0 \le \phi < 2\pi$.

Find the expressions for the scalars h_1, h_2, h_3 and the unit vectors $\mathbf{e}_{\xi}, \mathbf{e}_{\eta}, \mathbf{e}_{\phi}$ obeying

$$\frac{\partial \mathbf{x}}{\partial \xi} = h_1 \mathbf{e}_{\xi} \,, \quad \frac{\partial \mathbf{x}}{\partial \eta} = h_2 \mathbf{e}_{\eta} \,, \quad \frac{\partial \mathbf{x}}{\partial \phi} = h_3 \mathbf{e}_{\phi} \,,$$

where $\mathbf{x} = \mathbf{x}(\xi, \eta, \phi)$ is the position vector in the Cartesian coordinate system.

Show that the vectors \mathbf{e}_{ξ} , \mathbf{e}_{η} , \mathbf{e}_{ϕ} are orthogonal.

 \mathbf{End}