MATH193201

This question paper consists of 2 printed pages, each of which is identified by the reference **MATH1932**.

©UNIVERSITY OF LEEDS

Examination for the Module MATH1932 (January 2007)

Calculus, Ordinary Differential Equations and Several Variable Calculus

Time allowed: 2 hours

Attempt not more than four questions All questions carry equal marks

- 1. (a) Differentiate the following functions with respect to x
 - i) $\ln[1 + \sin(x)]$, ii) $\tanh^2(x + x^3)$.
 - (b) The function f is defined by $f(x) = \frac{x^2 + 1}{x^2 4}$.
 - i) Determine the first and second derivatives of f with respect to x.
 - ii) Show that f has a single stationary point which is a maximum and find the corresponding stationary value.
 - iii) Investigate the behaviour of f as $x \to 2$ from above and below.
 - iv) Sketch the graph of f.
- **2.** (a) Define the functions $\sinh(x)$ and $\cosh(x)$ in terms of the exponential function. Use your definitions to show that

i)
$$\cosh^2(x) - \sinh^2(x) = 1$$
, ii) $\sinh(x) \cosh(y) + \sinh(y) \cosh(x) = \sinh(x+y)$.

(b) Determine the following integrals:

i)
$$\int x \sinh(x) dx$$
, ii) $\int \frac{x-1}{x^2+1} dx$, iii) $\int_0^1 \sin^{-1}(x) dx$.

- **3.** (a) Find the Taylor series expansion about x = 0 in powers of x up to and including the term in x^4 for the function $f(x) = e^{\sin(x)}$.
 - (b) Show that the Taylor series expansion about x=0 of the function $\frac{1}{1-x^2}$ is $\frac{1}{1-x^2}=\sum_{n=0}^{\infty}x^{2n}$.
 - (c) By integrating the series in part (b), find the Taylor series for $\tanh^{-1}(x)$, using the condition $\tanh^{-1}(0) = 0$ to fix the constant of integration.

MATH1932

4. (a) Find the general solution to the first order differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y}{x} = x^2 \cos(x).$$

(b) Find the solution to the second order differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 4\frac{\mathrm{d}y}{\mathrm{d}x} + 5y = 8\cos(x)$$

subject to the boundary conditions y = 0, $\frac{dy}{dx} = 0$ at x = 0.

5. (a) Find all of the first and second order partial derivatives of the function

$$f(x,y) = x^3 + 3x^2y - x^2 - y^2 - 1$$

(b) Locate and classify the stationary points of f(x, y) and find the corresponding stationary values.

END