MATH-102201

This question paper consists of 2 printed pages, each of which is identified by the reference MATH-1022

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-1022 (May 2005)

Introductory Group Theory

Time allowed: 2 hours

Answer not more than four questions. All questions carry equal marks.

- 1. (i) Determine which of the following are groups. For those which are not groups, give one axiom that fails. For those which are groups, find the identity and inverses.
 - (a) $\{1, 3, 5, 7, 9\}$ under multiplication mod 10,
 - (b) {3,6,9,12} under multiplication mod 15,
 - (c) the set of positive rational numbers under multiplication,
 - (d) the set of 2 × 2 matrices with integer entries, under matrix subtraction.
- (ii) Prove that for any elements g and h of a group,

$$(gh)^{-1} = h^{-1}g^{-1}$$
 and $(g^{-1})^{-1} = g$

- (iii) Prove that a group G is abelian if and only if for every g and h in G, $(gh)^2 = g^2h^2$
- 2 (i) A regular octahedron is a solid with eight faces, all congruent equilateral triangles, six vertices and twelve edges (see the diagram). Explain why the group of rotations OCT of a regular octahedron has order 24. Find how many elements of OCT there are of each of the following kinds:

identity,

rotation about a line joining opposite vertices, rotation about a line joining the midpoints of opposite faces, rotation about a line joining the midpoints of opposite edges,

and check that these numbers add to 24. Find the orders of all elements of OCT.

- (ii) Given that just one of the following groups is not isomorphic to the other two, determine which one it is, and explain why:
 - (a) $\{1, 3, 7, 9, 11, 13, 17, 19\}$ under \times mod 20,
 - (b) $\mathbb{Z}_4 \times \mathbb{Z}_2$,
 - (c) $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

- 3. (i) Prove Lagrange's Theorem, that the order of a subgroup H of a finite group G divides the order of G. (Hint: first show that \sim given by $x \sim y$ if $xy^{-1} \in H$ is an equivalence relation on G.)
- (ii) Prove that $H = \{1, 7, 11\}$ is a subgroup of $G = \{1, 2, 3, ..., 18\}$ under multiplication mod 19. Find all the right cosets of H in G. What is the index of H in G? What can you say about the left cosets of H in G?
- 4. (i) Prove that the set of all permutations of a set X forms a group under function composition. Find the order of this group when X has 3, 4, 5 elements.

(ii) Let
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 8 & 6 & 10 & 4 & 1 & 2 & 5 & 9 & 7 \end{pmatrix}$$
 and $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 5 & 1 & 7 & 8 & 9 & 10 & 6 & 2 & 3 \end{pmatrix}$ be elements of \mathcal{S}_{10} . Write each of the following as a product of disjoint cycles:

$$f, g, fg, gf, f^2, g^3$$

- (iii) Show that a cycle of odd length is an even permutation, and a cycle of even length is an odd permutation, and hence determine which of the permutations in part (ii) are even.
- 5. (i) The group table of the dihedral group D_4 of order 8 is given.

	$\mid I \mid$	R	R^2	R^3	H	V	D	D'
\overline{I}	I	R	R^2	R^3	\overline{H}	\overline{V}	D	D'
R	R	R^2	R^3	I	D'	D	H	V
R^2	R^2	R^3	I	R	V	H	D'	D
R^3	R^3	\boldsymbol{I}	R	R^2	D	D'	V	H
H	H	D	V	D'	I	R^2	R	R^3
V	V	D'	H	D	R^2	I	R^3	R
D	D	V	D'	H	R^3	R	I	R^2
I R R ² R ³ H V D	D'	H	D	V	R	R^3	R^2	I

Which of the following subgroups are normal? $\{I, D\}$, $\{I, D, D', R^2\}$. Give reasons.

- (ii) Find the right cosets of the normal subgroup $N = \{I, R^2\}$, and draw up the group table for the quotient group D_4/N_- Is this quotient group cyclic?
- (iii) Describe a homomorphism θ from D_4 onto D_4/N . What is the kernel of θ ?

END