MATH-102201

This question paper consists of 2 printed pages, each of which is identified by the reference MATH-1022

Only approved basic scientific calculators may be used.

© UNIVERSITY OF LEEDS

Examination for the Module MATH-1022

(May/June, 2003)

Introductory Group Theory

Time allowed: 2 hours
Answer four questions All questions carry equal marks

- 1. (i) Determine which of the following are groups. For those which are, state the identity and inverses. For those which are not, give one axiom that fails:
 - (a) the set $\{\dots, -\frac{5}{2}, -2, -\frac{3}{2}, -1, -\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \dots\}$ of rational numbers of the form a/2 for a an integer, under addition,
 - (b) $\{2,4,6,8,10\}$ under multiplication mod 12,
 - (c) $\{1,3,5,9,11,13\}$ under multiplication mod 14,
 - (d) the set $\{0, 1, 2, 3\}$ under the operation given in the table:

	0	1	2	3
0	2	0	3	1
1	1	3	0	2
$\frac{1}{2}$	0	1	2	3
3	3	2	1	0

- (ii) Prove that for any prime number n, $\{1, 2, 3, \dots, n-1\}$ forms a group under multiplication mod n. [You may assume without proof that if m and n are coprime then there are integers x and y such that mx + ny = 1.] Calculate the order of this group when n = 19, and find a subgroup of order 3
- 2. (i) Define the direct product $G \times H$ of two groups G and H, and prove that $G \times H$ is a group Show further that $G \times H$ is abelian if, and only if, both G and H are abelian
 - (ii) Show that $\mathbb{Z}_8, \mathbb{Z}_4 \times \mathbb{Z}_2$, and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ are all abelian groups of order 8, and by considering the orders of their elements, or otherwise, show that no two of them are isomorphic.

Given that the group $\{1, 3, 7, 9, 11, 13, 17, 19\}$ under \times mod 20 is isomorphic to one of the three given groups, determine which one it is

(iii) Describe a non-abelian group of order 8 having exactly two elements of order 4, and find the orders of its other elements

- 3 (i) Determine which of the following four groups are isomorphic, giving reasons.
 - (a) $\{1, 2, 3, 4\}$ under multiplication mod 5,
 - (b) the set of integers in $\{1, 2, \dots, 8\}$ coprime with 9 under multiplication mod 9,
 - (c) the set of integers in {1, 2, ..., 11} coprime with 12 under multiplication mod 12,
 - (d) the group of symmetries of a (non-square) rectangle.
 - (ii) Find all right and left cosets of the subgroup $\{I,C\}$ of the dihedral group D_3 of order 6, whose table is given

	Ι	R S I C A B	S	A	В	C
I	I	R	S	A	В	С
R.	R	\mathbf{S}	Ι	В	$^{\rm C}$	Α
S	S	I	R	\mathbf{C}	Α	В
A	Α	$^{\rm C}$	В	I	\mathbf{S}	\mathbf{R}
В	В	A	\mathbf{C}	R	I	S
С	С	В	A	\mathbf{S}	R	Ι

- (iii) Prove Fermat's Little Theorem, that if p is a prime number, then for any integer a, $a^p \equiv a \mod p$ [Any standard results of group theory used should be clearly stated.] Hence calculate the remainder on dividing 3^{203} by 101, justifying your method.
- 4. (i) Define permutation of a set X Prove that any permutation of a finite set can be written as a product of disjoint cycles
 - (ii) For the permutations $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 7 & 5 & 2 & 8 & 1 \end{pmatrix}$ and $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 6 & 7 & 4 & 8 & 5 & 1 \end{pmatrix}$ of $\{1, 2, 3, 4, 5, 6, 7, 8\}$, write each of f, g, fg, gf and fg^{-1} as a product of disjoint cycles, and determine which of them are even.
 - (iii) Describe all conjugacy classes of S_4 , the group of all permutations of $\{1, 2, 3, 4\}$, quoting clearly any standard results needed to justify this. Find the order of S_4 and the number of elements in each conjagacy class.
- 5. (i) The group table of the quaternion group Q is given. Which of the following subgroups are normal? (a) $\{1, a, a^2, a^3\}$, (b) $\{1, b, a^2, a^2b\}$. Give reasons.

	1	a	a^2	a^3	b	ab	a^2b	a^3b
1	1	\overline{a}	a^2	a^3	b	ab	a^2b	a^3b
a	a	a^2	a^3	1	ab	a^2b	a^3b	b
a^2	a^2	a^2 a^3	1	a	a^2b	a^3b	b	ab
a^3	a^3	1	a	a^2	a^3b	b	ab	a^2b
b	b	a^{1} $a^{3}b$	a^2b	ab	a^2	a	1	a^3
ab	ab	b	a^3b	a^2b	a^3	a^2	a	1
	a^2b	ab	b	a^3b	1	a^3	a^2	a
		a^2b		b		1	a^3	a^2

- (ii) Find all the right cosets of the normal subgroup $N = \{1, a^2\}$ of Q, and draw up the group table for the quotient group Q/N Is this group cyclic?
- (iii) Describe a homomorphism θ from Q onto Q/N. What is the kernel of θ ?