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SECTION B. 
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Physical Constants 
 
Permittivity of free space ε 0 = 8.854 × 10−12 F m−1 
Permeability of free space μ 0 = 4 π × 10−7 H m−1 
Speed of light in free space c = 2.998 × 108  m s−1 
Gravitational constant G = 6.673 × 10−11 N m2 kg−2 
Elementary charge e = 1.602 × 10−19  C 
Electron rest mass me = 9.109 × 10−31  kg 
Unified atomic mass unit mu = 1.661 × 10−27  kg 
Proton rest mass mp = 1.673 × 10−27  kg 
Neutron rest mass mn = 1.675 × 10−27  kg 
Planck constant h = 6.626 × 10−34  J s 
Boltzmann constant kB = 1.381 × 10−23  J K−1 
Stefan-Boltzmann constant σ = 5.670 × 10−8  W m−2 K−4 
Gas constant R = 8.314  J mol−1 K−1 
Avogadro constant NA = 6.022 × 1023 mol−1 
Molar volume of ideal gas at STP  = 2.241 × 10−2 m3  
One standard atmosphere P0 = 1.013 × 105 N m−2 

  
  
 Spherical polar coordinates: 
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 For a harmonic oscillator of mass m and angular frequencyω the ground state 
 wavefunction is  
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 The wavefunctions of the ground and first excited states for the hydrogen atom in 
 spherical polar coordinates are: 
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 where 0a  is the Bohr radius.  
 
 
 Useful definite integrals: 
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SECTION  A − Answer ALL parts of this section 
 
 
1.1) Prove that if the operators Â  and B̂  are hermitian, then ˆ ˆ,i A B⎡ ⎤

⎣ ⎦  is hermitian. 

[5 marks] 
 

1.2) An hermitian operator Ĥ  has the property 4 ˆˆ 1H = . What are the eigenvalues of the 
 operator Ĥ ? What are the eigenvalues of Ĥ  if it is not restricted to be hermitian? 
 

[6 marks] 
 
1.3) For a harmonic oscillator of mass m and angular frequencyω , calculate ˆk x n , 

where n  and k  are eigenstates of the harmonic oscillator, and show that it 

vanishes unless 1n k= ± . 
 [7 marks]   

 
1.4) Positronium consists of an electron and a positron bound together analogous to the 
 electron and proton in the hydrogen atom. The spin interaction Hamiltonian of the 
 electron and positron can be written as  

1 2
ˆ ˆĤ S Sβ= i , 

 where 1̂S and 2Ŝ  are the spin operators of the electron and the positron and β is a 
 constant. Derive an expression for the interaction energies of positronium in the 
 singlet and triplet states. 

 [8 marks] 
 

1.5) State Hund’s rules.  
 Assuming Hund’s rules apply, derive an expression for the spectroscopic terms of 
 the ground state of carbon (C, atomic number Z=6) and oxygen (O, Z=8).  

                                                                                                                                [7 marks] 
 
1.6) Radiation with a wavelength of 2.603 mm is absorbed by CO in a transition between 

the rotational level states J=0 and J=1. Calculate the moment of inertia of the CO 
molecule and the equilibrium separation between the carbon and oxygen nuclei.  

                                                                                                                             
 [7 marks] 
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SECTION  B − Answer TWO questions 

 
   
2a) The hamiltonian of a one-dimensional anharmonic oscillator of mass m and angular 

frequency ω is  
2 2

2 2 4
2

1ˆ ˆ ˆ
2 2

dH m x x
m dx

ω λ= − + +
=

, 

 where the third term is small compared to the second. 
 

(i) Using time-independent perturbation theory, show, to first order, that the 
effect of the anharmonic term is to change the energy of the ground state of the 
harmonic oscillator by  

2
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=  

[10 marks] 
(ii) What would be the first-order effect of an additional term proportional to 3x̂  in            

the hamiltonian? 
[5 marks] 

b) Consider now a system described by the hamiltonian  
2 2

4
2
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2

dH x
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=

 

 [Note that Ĥ ′  is similar to the hamiltonian Ĥ of part a), but it does not have any term 
 proportional to 2x ]. 
 

(i) Use the variational method with the trial wavefunction  
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  to show that this system has an upper limit for the ground state energy of 
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[10 marks] 
 

(ii) Use the variational method to estimate the ground state energy. 
 [5 marks] 
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3) For a system of spin 1
2

 the cartesian components of the spin operator 

ˆ ˆ ˆ ˆ
x y y z zS S S= + +xS u u u , where xu , yu and zu  are the unit vectors along the x, y 

and z-direction respectively, can be expressed by the matrices: 
 

0 1 0 1 0ˆ ˆ ˆ  ,  ,   
1 0 0 0 12 2 2x y z

i
S S S

i
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= = = .  

 
a) Find the eigenvalues and normalized eigenstates of the spin operator of an 

electron in the direction of a unit vector sin  cos  zϑ ϑ= +xn u u  (i.e. Ŝ ni ). 
[14 marks] 

b) A measurement of ˆ
xS  for an electron yields the value 

2
+
= . Calculate the 

expectation value of Ŝ ni . 
[8 marks] 

c) After the measurement made in b), a measurement of Ŝ ni is carried out. What 
are the probabilities of observing each of the eigenvalues of Ŝ ni ? 

[8 marks] 
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4) Consider an unperturbed hamiltonian with eigenvalues kω=  and eigenfunctions kφ . 

 In first-order time-dependent perturbation theory, the amplitude ( )k mc t→  for a 

 transition due to the time-dependent perturbation ( )V̂ tλ  from a state kφ  to a 

 state mφ  is: 

( ) ( ) ( )
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 A hydrogen atom, initially in its ground state ( 100nlm = ), is placed in a time-

 dependent electric field ( )0,0, z=E E  aligned in the z-direction, where 

( )0

0 0
exp 0
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E
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 This results in the time-dependent perturbation ˆze zE , where e  is the elementary 
 charge. 
 
a) Show that the probability of finding the hydrogen atom in the 200  state is zero.  

[5 marks] 
 
b) To first order, show that,  as  t →∞ ,  the probability  that the hydrogen atom has 

made a transition to the 210  state is  
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 where 0a is the Bohr radius, and ω=  is the energy difference between the 210  and 

 the ground state. [It is convenient to work in spherical polar coordinates.] 
[16 marks] 

 
c) What are the probabilities of finding the atom in the 211  and 21 1−  states? 

[9 marks] 
 
   
  

 


