King's College London

UNIVERSITY OF LONDON

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

CP/3402 Solid State Physics

Summer 1999

Time allowed: THREE Hours

Candidates must answer SIX parts of SECTION A, and TWO questions from SECTION B.

The approximate mark for each part of a question is indicated in square brackets.

Separate answer books must be used for each Section of the paper.

You must not use your own calculator for this paper. Where necessary, a College Calculator will have been supplied.

TURN OVER WHEN INSTRUCTED 1999 ©King's College London

Fundamental constants

Planck constant	h	=	$6.626 \times 10^{-34} \text{ J s}$
Elementary charge	е	=	$1.602 \times 10^{-19} \text{ C}$
Rest mass of an electron	me	=	$9.109 \times 10^{-31} \text{ kg}$
Permittivity of free space	ϵ_0	=	$8.854 \times 10^{-12} \mathrm{F m}^{-1}$
Boltzmann constant	$k_{\rm B}$	=	$1.381 \times 10^{-23} \text{ J K}^{-1} = 8.617 \times 10^{-5} \text{ eV K}^{-1}$
Avogadro number	$N_{\rm A}$	=	$6.022 \times 10^{23} \text{ mol}^{-1}$

SECTION A - answer six parts of this section

1.1)Describe the NaCl and CsCl crystal structures.

> Explain why some alkali halides have the NaCl structure while others have the CsCl structure.

> > [7 marks]

1.2) Explain how the Miller indices (*hkl*) are calculated for a crystal plane.

Hence write down (hkl) for a face, the face diagonal plane and the cube diagonal plane of a crystal which has cubic symmetry.

[7 marks]

The heat capacity C_v of a metallic crystal at low temperature T may be written 1.3) as $C_v = \gamma T + \beta T^3$.

What is the origin of these two contributions to C_v ? Explain how experimental data obtained in this temperature region may be plotted to obtain a straight line graph.

[7 marks]

1.4) Explain the origin of the Hall effect. A rectangular sample has sides parallel to the coordinate axes x, y, and z. Show that when the sample carries a current density j_x and is placed in a magnetic flux density B_z , an electric field $E_y = -j_x B_z/ne$ is developed, where *n* is the electron concentration.

[7 marks]

1.5) Explain, with the aid of E-k diagrams, what is meant by the terms *phonon absorption* and *phonon emission* for the optical excitation of an electron from the top of the valence band to bottom of the the conduction band in an indirect-gap semiconductor.

[7 marks]

1.6) Draw a graph illustrating how the concentration of electrons in a typical sample of n-type silicon varies over the temperature range 20 – 1000 K. Label the intrinsic and extrinsic regions of the plot, and indicate the gradients expected in each case.

[7 marks]

1.7) The rectifier equation for the current *I* flowing through an ideal p-n junction at temperature *T* and forward bias *V* is $I = I_0[\exp(eV/k_BT) - 1]$.

Sketch this relationship for both negative and positive V, and define the meaning of the term I_0 . Explain why the behaviour of a real diode departs rapidly from the above expression for increasing positive values of V.

[7 marks]

1.8) Explain what is meant by the *Meissner effect* for a type I superconductor.

Show that such a material behaves as a perfect diamagnet.

[7 marks]

SECTION B - answer two questions

2.) Describe the Debye-Scherrer method for studying the X-ray diffraction from polycrystalline powders or wires.

[8 marks]

Show that, for an allowed reflection at angle θ , the diameter of the "ring" observed on the X-ray film is $4R\theta$ where *R* is the radius of the camera.

[10 marks]

Scattering from the (*hkl*) planes of a crystal with the diamond structure, and lattice constant *a*, occurs at angles θ given by $\sin^2\theta = (\lambda^2/4a^2) (h^2 + k^2 + l^2)$ for X-rays with wavelength λ provided (i) *h*, *k* and *l* are all odd or (ii) *h*, *k* and *l* are all even with (h + k + l)/2 also even.

Calculate the diameters of one ring in each of the categories (i) and (ii) when R = 57.3 mm, $\lambda = 0.1542$ nm and a = 0.3567 nm.

[12 marks]

3.) Explain what is meant by the Fermi energy for a metal crystal.

[6 marks]

Starting from the Schrödinger equation, show that the Fermi energy for N free electrons in a metal crystal of volume V is given by

$$E_{\rm F} = \frac{h^2}{8m_{\rm e}} \left(\frac{3N}{V\pi}\right)^{2/3}$$

[16 marks]

Hence show that the Fermi energy of copper is approximately 7 eV. Copper is monovalent with a density of 8930 kg m⁻³ and an atomic mass number of 63.5.

[8 marks]

4.) By considering the effect of an electric field on a wavepacket with energy E and wavenumber k, show that the effective mass m^* of an electron moving in a periodic potential is

$$m^* = \hbar^2 \bigg/ \frac{d^2 E}{dk^2}$$

[15 marks]

Describe, paying attention to the experimental conditions necessary, how effective masses in a semiconductor can be measured using cyclotron resonance. Show that resonance is obtained at a frequency $f = eB / 2\pi m^*$ for a magnetic flux density *B*.

[10 marks]

The light and heavy holes in silicon have effective masses of 0.16 m_e and 0.52 m_e respectively. Calculate the flux densities at which resonance is observed in a microwave cavity operating at 24 GHz.

[5 marks]

See next page

5.) Explain what is meant by a depletion layer at an abrupt p-n junction.

[6 marks]

The depletion layer extends from $x = -w_p$ in the p region to $x = +w_n$ in the n region. If N_a and N_d are the effective acceptor and donor concentrations in the p and n regions, respectively, write down an equation for charge neutrality.

[4 marks]

Hence show that the total width of the depletion layer is

$$d = \left(\frac{2\varepsilon_{\rm r}\varepsilon_0 V_0}{e(N_{\rm a} + N_{\rm d})}\right)^{1/2} \left[\left(\frac{N_{\rm a}}{N_{\rm d}}\right)^{1/2} + \left(\frac{N_{\rm d}}{N_{\rm a}}\right)^{1/2} \right]$$

You may assume that the potential in the depletion region is given by

$$V(x) = \left(\frac{eN_{\rm a}}{2\varepsilon_{\rm r}\varepsilon_0}\right)(x + w_{\rm p})^2 \quad \text{for } -w_{\rm p} < x < 0$$

$$V(x) = V_0 - \left(\frac{eN_d}{2\varepsilon_r \varepsilon_0}\right) (x - w_n)^2 \text{ for } 0 \le x < w_n$$

where ε_r is the relative permittivity and V_0 is the built-in potential.

[10 marks]

The capacitance of a silicon p-n junction of area 10^{-6} m² is used with a 100 µH inductor to create a resonant circuit. The junction has $N_a = N_d = 10^{22}$ m⁻³, $\varepsilon_r = 11.7$ and $V_0 = 0.68$ V.

Calculate the change in the resonant frequency when the bias applied to the junction changes from -1 to -10 V.

For a junction biased with V volts, V_0 must be replaced by $(V_0 - V)$ in the above expression. The resonant frequency of an LC circuit is $1/[2\pi\sqrt{(LC)}]$. [10 marks]

FINAL PAGE