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Fundamental constants

Planck constant h = 6.626 × 10–34 J s

Elementary charge e = 1.602 × 10–19 C

Rest mass of an electron me = 9.109 × 10–31 kg

Permittivity of free space ε0 = 8.854 × 10–12 F m–1

Boltzmann constant kB = 1.381 × 10–23 J K–1  =  8.617 × 10–5 eV K–1

Avogadro number NA = 6.022 × 1023 mol–1

SECTION  A − Answer SIX parts of this section

1.1) Describe the CsCl crystal structure.

The ionic radii of Cs+ and Cl− are 0.167 nm and 0.181 nm, respectively. Use

this information to estimate the lattice constant for the conventional unit cell.

[7 marks]

1.2) Define the symbols in the Bragg Law, nλ = 2 d sin θ.

A metal at 20 °C scatters a beam of monochromatic X-rays at a Bragg angle of

47.300°. When the specimen is heated to 220 °C this angle changes to 47.053°.

Show that the coefficient of linear thermal expansion for the metal is
2 × 10−5 K−1.

[7 marks]

1.3) Atoms with two different masses are placed alternately to form a linear chain.
Sketch the ω vs. k dispersion curves for the vibrational frequencies of the

chain. (ω is the angular frequency and k is the wavenumber.)

Explain why the optical branch and the acoustic branch are so named.

[7 marks]

1.4) Sketch the density g(E) of electron states as a function of energy E for a metal,

as predicted by the free-electron theory. Which states are occupied at

temperature T = 0 K? Estimate the fraction of the electrons which are

thermally excited at room temperature in a metal with a Fermi energy of 5 eV.

[7 marks]
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1.5) An electron is excited optically from the top of the valence band to the bottom

of the conduction band in an indirect-gap semiconductor. Explain, with the aid

of  E–k diagrams, what is meant by the each of the terms phonon absorption

and phonon emission for the excitation.

[7 marks]

1.6) Explain how elements from group V of the periodic table form substitutional

donors in silicon and germanium. Using the hydrogen model analogy, estimate

the ionisation energy of such a donor in germanium given that the ionisation

energy of the hydrogen atom is
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Note: For Ge the effective mass of the electrons is me* = 0.22 me, and the

relative permittivity is εr = 15.8.

 [7 marks]

1.7) Define the terms in the expression Ey  =  RJxBz  for the Hall Effect, which

applies for orthogonal geometry.

Calculate Ey for a metal specimen, with an electron concentration of 1029 m−3,

carrying a current density of 105 Am−2 and placed in a magnetic flux density of

0.5 T.

 [7 marks]

1.8) What is meant by (a) the critical temperature Tc and (b) the critical field Bc for

a type I superconductor. Sketch the relationship between Bc and temperature T

for a typical type I superconductor.

Explain, briefly, the Silsbee hypothesis of critical currents.

 [7 marks]
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SECTION  B − Answer TWO questions

2) Explain the meanings of the terms in the expression for the structure factor Fhkl

in relation to the scattering of X-rays from a crystalline solid:

Fhkl   =  
j

∑  fj exp {2πi (h xj + k yj + l zj)}.

[4 marks]

Hence show that crystals with the body-centred cubic structure scatter X-rays

only if (h + k + l) is even.

[8 marks]

Tantalum has the body-centred cubic structure. Its atomic mass number is 181

and its density is 16660 kg m−3.

A crystal of tantalum is placed in a monochromatic beam of X-rays of

wavelength λ  =  0.15 nm.

(a)  Show that the lattice constant  a  =  0.3304 nm if the atoms are assumed to

be hard spheres in close contact.

[6 marks]

(b)  Show that the angle θ  at which scattering is obtained from (h k l) planes is

given by sin2θ  =  (λ2 / 4 a2) (h2 + k2 + l2).

[5 marks]

(c)  Calculate the angle at which the {220} reflection occurs.

[2 marks]

(d)  Calculate the largest angle at which X-ray scattering will be observed.

[5 marks]
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3) State the assumptions made by Einstein to obtain an expression for the

temperature-dependence of the heat capacity of a crystalline solid.

[4 marks]

At temperature T, the average energy of a quantum oscillator with angular

frequency ω is given by

E
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(a) Show that the Einstein expression for the heat capacity per mole may be

written as
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where θ E  is the Einstein temperature, ω E  is the Einstein frequency and

θ E  =  hω E /kB.

[8 marks]

(b)  Discuss the behaviour of this expression at (i) high temperature and

(ii) low temperature.

[6 marks]

(c) Discuss how the behaviour predicted from the Einstein expression

compares with that observed experimentally. Explain, without derivation, the

more realistic approach used by Debye to predict the temperature dependence

of the heat capacity.

[4 marks]

(d)  The variation of heat capacity with temperature for silicon can be fitted

reasonably well using  θ E  =  380 K. Use this information to calculate the zero-

point energy for 1 kg of silicon. (The atomic mass number of silicon is 28.)

[8 marks]
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4) Krönig and Penney showed that, in a one-dimensional crystal, electrons

moving in a periodic potential with the same periodicity as the lattice can have

energies E related to the wavenumber k by

cos (ka)  =  cos (λa)  +  α sin (λa)  ,

where α  =  meV/λh2, λ = (2meE)½/h, a is the period of the lattice, and V

represents the strength of the potential barrier between the unit cells.

(a)  Using a diagram, show how this relationship leads to a situation in which

allowed energy bands are separated by forbidden energy bands.

[8 marks]

(b)  Show further that when V�= 0 (as in a metal) the solution reduces to the

free-electron parabola  E  =  h2k2/2me.

[7 marks]

(c)  Draw a diagram, using the repeated zone scheme, to illustrate how the

Krönig-Penney solutions are related to the free-electron parabola.

[6 marks]

(d)  By considering the discontinuities that occur on such a diagram, explain

how the energy gaps may be interpreted in terms of Bragg diffraction of the

electron waves.

[9 marks]
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5) Explain what is meant by an intrinsic semiconductor.
[3 marks]

For a semiconductor at temperature T the concentrations of electrons in the
conduction band and holes in the valence band are respectively
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where Eg and EF are the energy gap and Fermi energy, respectively, and A and
B are constants.

Show that the intrinsic carrier concentration is
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[4 marks]

At temperatures above 275 K the energy gap of silicon is given by
Eg = E0 − αT, where E0 = 1.205 eV and α = 2.83 × 10−4 eV K−1. Show that the
temperature coefficient of the intrinsic carrier concentration may be written as
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[8 marks]

Hence show that at 293 K the intrinsic carrier concentration increases by 10%
for an increase in temperature of approximately 1.16 K.

[4 marks]

Use the original expression for ni (with Eg = E0 − αT) to calculate the
temperature at which the intrinsic carrier concentration is double the value at
293 K. (This will require an iterative technique.)

[8 marks]

Explain why an intrinsic semiconductor is not suitable for the majority of
semiconductor device applications.

[3 marks]


