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Physical Constants

Permittivity of free space ε0 = 8.854 × 10−12 Fm−1

Permeability of free space µ0 = 4π × 10−7 H m−1

Speed of light in free space c = 2.998× 108 m s−1

Gravitational constant G = 6.673× 10−11 N m2 kg−2

Elementary charge e = 1.602× 10−19 C

Electron rest mass me = 9.109× 10−31 kg

Unified atomic mass unit mu = 1.661× 10−27 kg

Proton rest mass mp = 1.673× 10−27 kg

Neutron rest mass mn = 1.675× 10−27 kg

Planck constant h = 6.626× 10−34 J s

Boltzmann constant k B = 1.381× 10−23 J K−1

Stefan-Boltzmann constant σ = 5.670× 10−8 Wm−2 K−4

Gas constant R = 8.314 J mol−1 K−1

Avogadro constant NA = 6.022× 1023 mol−1

Molar volume of ideal gas at STP = 2.241× 10−2 m3

One standard atmosphere P0 = 1.013× 105 N m−2

Throughout β = 1
kBT and T is the temperature.
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SECTION A – Answer ALL parts of this section

1.1) For N very weakly interacting fermions of mass m in a volume V the Fermi
energy µ is given by

µ =
(

N

V

) 2
3 h2

2m

(
3
8π

) 2
3

.

Calculate in electron volts the Fermi energy of aluminium given that the mass
density is 2700 kg m−3, its relative atomic mass is 27 and there are three con-
duction electrons per aluminium atom.

[5 marks]

1.2) For a one-dimensional harmonic oscillator with frequency ω show that the par-
tition function Z is given by

Z =
exp

(
−βh̄ω

2

)
1− exp (−βh̄ω)

.

[5 marks]

1.3) A paramagnetic solid in a magnetic field of strength B contains N weakly in-
teracting particles, each with a permanent magnetic moment mσ; σ can have
the 2S + 1 values −S,−S + 1, . . . , S − 1, S. Show that the partition function of
the system can be written as

Z =

(
sinh

(
S + 1

2

)
Bmβ

sinh
(

1
2Bmβ

) )N

.

[10 marks]

1.4) A system consists of two distinguishable atoms. Each atom can exist in three
quantum energy eigenstates, a ground state with energy taken to be 0 and a
doubly degenerate excited state with energy ε. Determine the state space of the
system and the partition function.

[10 marks]
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1.5) For an ideal gas of N classical monatomic particles of mass m in three dimen-
sions, calculate the density of states g (E) where E is the total energy of the
system.

[5 marks]

1.6) A three-dimensional harmonic oscillator has energy levels

εn1,n2,n3 = h̄ω

(
n1 + n2 + n3 +

3
2

)
where each ni can be 0, 1, 2, . . .. Find the degeneracies of the levels of energy
7h̄ω/2 and 9h̄ω/2. Given that the system is in thermal equilibrium at temper-
ature T show that the higher energy level is more populated than the lower one
if ln (5/3) kBT > h̄ω.

[5 marks]
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SECTION B – Answer TWO questions

2) For a very weakly interacting gas of fermions the condition for degeneracy is

n �
(

2πmkBT

h2

) 3
2

where n is the number density, m is the mass of each fermion and T is the
temperature.

A hypothetical white dwarf star is supposed to consist of 29Si14 at a temperature
of 109 K and a mass density of 1010 kg m−3. The material is completely ionised.
Use the condition for degeneracy to determine whether the perfect gas equation
of state is appropriate for the electron gas and the nuclear gas.

[20 marks]

Given that for a degenerate gas the pressure p is 2
5nEF where EF is the Fermi

energy, calculate the contribution to the internal pressure of the star due to the
electron gas and the nuclear gas.

[10 marks]
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3) A system of weakly interacting indistinguishable particles obeys Bose-Einstein,
Fermi-Dirac or Maxwell-Boltzmann statistics. For such systems write down
the definitions of the partition function in a grand canonical ensemble with
temperature T and chemical potential µ.

[3 marks]

Evaluate the partition function for each statistic.

[6 marks]

Argue that the probability distribution Pi (ni, T, µ) for finding ni particles in a
given single-particle state labelled by i with energy εi, is given by

a)

Pi (ni, T, µ) =
exp (−β [εi − µ]ni)

(1 + a exp (−β [εi − µ]))a

with a = 1 for fermions and a = −1 for bosons;

and

b)

Pi (ni, T, µ) =
exp (−β [εi − µ]ni)
exp

(
e−β[εi−µ]

)
ni!

for Maxwell-Boltzmann particles.

[3 marks]

For each case, use the distribution to find expressions for the average occupation
number 〈ni〉.

[6 marks]

Express Pi in each case as a function of ni and 〈ni〉.

[3 marks]

Obtain an expression for the relative fluctuation in the occupation number

∆ni/ 〈ni〉 where ∆ni =
√〈

(ni − 〈ni〉)2
〉
.

[9 marks]
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4) In a cavity of macroscopic size show that the grand canonical partition function
for photons is given by

Z =
∏

i

(
1− e−βεi

)−1

where εi is the energy of the ith single particle state, β = 1
kBT and T is the

temperature.

[7 marks]

In a 3-dimensional cubic cavity of volume V show that the single particle density
of states g (ε) in energy ε is

g (ε) = aV ε2

where a = 1
π2h̄3c3 .

[7 marks]

Find expressions for the pressure P , energy density u, entropy density s and
specific heat CV per unit volume of black-body radiation at temperature T on
using

P =
kBT

V
log Z

u = − 1
V

∂ log Z

∂β

s =
1
V

[
∂ (PV )

∂T

]
V

CV =
(

∂u

∂T

)
V

and ∫ ∞
0

dx x2 log
(
1− e−x

)
= −π4

45
.

[16 marks]
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