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SECTION A – Answer SIX parts of this section

1.1) Explain how rounding errors and truncation errors arise in numerical
calculations. What can be done to minimise their effect?

[7 marks]

1.2) Show how the Monte Carlo method can be used to find the area of a circle,
and hence to evaluate π.

[7 marks]

1.3) If the sum of a convergent series, after n terms, is Sn, show by comparing it to
a geometric series, that a good estimate of its infinite sum is:
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[7 marks]

1.4) The recurrence relation for Chebyshev polynomials, Tn(x) is:
1)()(2)( 11 ≥−= −+ nxTxxTxT nnn

Show that this relation is only stable for 0<x<1.
[7 marks]

1.5) Use a Taylor series expansion of f(x+∆x) to show that the symmetric

difference formula 
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 [7 marks]

1.6) Explain how to use the Golden Section search method to find the minimum of
a function f(x).

[7 marks]

1.7) Explain (in the form of a series of steps) how you would use the simulated
annealing technique to estimate the minimum of a function of N variables,
f(x1, x2, …, xN). You need not discuss choice of the “temperature” variable or
the step size.

[7 marks]

1.8) Describe the fourth-order Runge-Kutta method of solving ordinary differential
equations whose boundary conditions are in the form of the initial values of
the function and its derivatives.

[7 marks]

SEE NEXT PAGE
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SECTION B – Answer BOTH questions

In EACH question, answer just ONE of the parts (a, b, or c).

Explain how you would try to solve the problem numerically, including an
explanation of why you would choose the method you describe and how you
would assess the accuracy and reliability of the solution. A detailed description of
the method is required, not a computer program.

2) Select ONE of the problems (a, b or c) described below:

a) A circular drum skin of radius 30 cm is fixed around its circumference. When
it is struck in the centre, the vertical displacement  z(r, , t) of the drum skin
satisfies the (circularly symmetric) wave equation.:
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If the initial displacement of the skin is a cone shape, with a maximum
displacement of 1 cm at the centre, find the frequency of vibration at the
centre given that  u = 120 ms-1.

[30 marks]

b) It takes 5 minutes to hard boil a hen’s egg (diameter 4 cm) when it is put into
boiling water straight from the fridge (at 0º C). How long does it take to hard
boil an ostrich’s egg (diameter 20 cm)? (An egg is hard boiled when the centre
reaches 80º C). State all your assumptions. The heat conduction equation with
spherical symmetry is:
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[30 marks]

c) The equation of motion for the angle, ��of a simple pendulum, of fixed length
l, is

0sin
d

d
2
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l
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t
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You usually approximate this by setting θθ =sin , for small .

A pendulum of length 1 m is displaced by 0 at t = 0. Explain how you would
solve the full differential equation numerically in order to find the value of the
angle 0 such that the period of the pendulum is exactly 2.25 s. You should
outline two methods of solution, and explain why you chose one of them.

[30 marks]

SEE NEXT PAGE
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3) Select ONE of the problems (a, b or c) described below:

a) Describe two methods to evaluate x
x

x
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π

π

. Which of your methods is the

more efficient?
[27 marks]

Give a rough estimate of the value of the answer.
[3 marks]

b) An thin isolated conducting wire of length 10 cm has a static charge on it of
1 µC.  Consider the potential energy associated with the repulsion of charges
at different points along the wire. Describe a numerical method to calculate
the distribution of charge along the wire. Sketch the distribution that you
would expect.

[30 marks]

c) Outline a numerical method to find all the roots of the equation
 z4 + 2z + 2 = 0

where z is complex.

[30 marks]
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