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The following information defines terms used in this examination
and may be of use.

• The Jacobian of the transformation from variables (x, y) to (u, v) is given by

J =
∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

∂x/∂u ∂y/∂u
∂x/∂v ∂y/∂v

∣

∣

∣

∣

• The flux integral

J =

∫ ∫

S

(F · n) dS

over the surface S specified parametrically via identities x = x(u, v), y = y(u, v)

and z = z(u, v), is calculated using

J =

∫ ∫

(FxJx + FyJy + FzJz) dudv

applying appropriate limits for parameters u and v, where

Jx =
∂(y, z)

∂(u, v)
, Jy =

∂(z, x)

∂(u, v)
, Jz =

∂(x, y)

∂(u, v)

are the corresponding Jacobians.

• The polar coordinates (r, θ) on the (x, y)− plane are defined by the transfor-

mation equations

x = r cos θ, y = r sin θ
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SECTION A – Answer ALL parts of this section

1.1) Given the matrix

A =

(

−1 2
2 −1

)

,

find the similarity transformation that diagonalises A. Write down the resulting

diagonal matrix.

[7 marks]

1.2) State what is meant by a conservative and solenoidal vector fields and verify that

the vector field F1 =
(

y2z, z2x, x2y
)

is solenoidal, while F2 = (sin z, 2y, x cos z)

is conservative.

[6 marks]

1.3) A robot standing on a hill whose height H(x, y) = exp
(

−x2 − y2
)

, was taught to

make jumps of fixed length of λ =0.1 along the direction of steepest downward

slope of H(x, y). Assuming that initially the robot was at the point (1, 1),

determine its position after 2 steps.

[7 marks]

1.4) Calculate the integral
∫ ∫

e−α
√

x2+y2

√

x2 + y2
dxdy

over the entire x, y-plane using an appropriate change of coordinates.

[6 marks]

1.5) What does the statement, that the function f(x, y) is a homogeneous function

of degree n, mean? Using an appropriate substitution, integrate the differential

equation
dy

dx
=

xy

x2 − y2

to find an equation relating the variables x, y up to a constant.

[7 marks]

1.6) Calculate the flux of the vector field F = (x, y, 0) through the closed surface

bounded by the cylinder x2 +y2 = R2 of radius R and the two planes z = 1 and

z = −1.

[7 marks]
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SECTION B – Answer TWO questions

2) Consider a gas of molecules A with an initial concentration n0. Upon heating,

each molecule A breaks down into a stable molecule C and a metastable species

B, that in turn dissociates into a molecule C and an unknown fragment that

is not of interest. The concentrations A(t), B(t) and C(t) of the three species

satisfy the following equations:

dA

dt
= −kA

dB

dt
=

k

2
A − k

2
B

dC

dt
=

k

2
A +

k

2
B

a) Write the equations in a matrix form dN
dt

= UN where N is a vector and U a

matrix.

[2 marks]

b) Assuming an exponential solution, N(t) = Y eλt, show that λ and Y can be

obtained by solving an eigenproblem for the matrix U .

[2 marks]

c) Show that the eigenvalues λi (i = 1, 2, 3) of the matrix U are λ1 = 0, λ2 = −k,

λ3 = −k/2, while the corresponding eigenvectors Yi can be chosen as

Y1 =





0
0
1



 , Y2 =





1
−1
0



 , Y3 =





0
1
−1





[11 marks]

d) Construct all elementary solutions of the equation and thus write down its gen-

eral solution.

[5 marks]

e) Calculate the particular solutions for the concentrations that correspond to the

initial conditions.

[6 marks]

f) Sketch the solutions you calculated, explaining in words the behaviour of each

concentration, and finding the time at which the concentration of B is maxi-

mal.

[4 marks]
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3)

Consider the following differential equation (DE):

y′′ + y′ − 2y = xex + sin x

a) Describe the type of this DE.

[2 marks]

b) Show that its complementary solution is

y = C1e
x + C2e

−2x,

where C1 and C2 are arbitrary constants.

[4 marks]

c) Determine the particular integral solution.

[16 marks]

d) Hence, state the general solution.

[2 marks]

e) Obtain the particular solution which satisfies the initial conditions y(0) = 0 and

y′(0) = 0.

[6 marks]
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4) Given the vector force field F = (Fx, Fy, Fz) = (2xz, 2yz, x2 + y2),

a) Show that F is conservative.

[2 marks]

b) State the value of the line integral
∮

L
F · dl over any closed path L.

[2 marks]

c) Explicitly calculate the line integral along the closed path x2 +z2 = 1 and y = 0

using polar coordinates.

[6 marks]

d) Prove that if the line integral along any closed path is zero, then the line integral

between points A and B does not depend on the particular path A→B chosen.

[6 marks]

e) Verify that dU = Fxdx + Fydy + Fzdz is the exact differential.

[7 marks]

f) Find, up to a constant, the function U(x, y, z) giving rise to the exact differential

above.

[5 marks]

g) State the relationship between the field F and the function U(x, y, z); what is

the latter function U called?

[2 marks]

6 FINAL PAGE


