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SECTION A — Answer SIX parts of this section

1.1) By separating variables, find the solution of the differential equation

d
3y2—y — 2z =2z,
dx

which satisfies the boundary condition that y = 0 when z = 0.

[7 marks]
1.2) Find the solution of the differential equation
d’y . dy
29 1929 gy —
dxz? - dx y=0,
which satisfies the boundary conditions that y = 0 and dy/dz = 4 when z = 0.
[7 marks]

1.3) Given the scalar field
1

1 + m? + y2 ?
find the directional derivative of ¢ at the point (1,1) in the z-direction.
[7 marks]

¢ =

1.4) Show that the vector field E = zx cosh yi — z sinh yj + xzyk is solenoidal.

[7 marks]
1.5) Calculate the eigenvalues of the matrix
1 3
().
[7 marks]
1.6) By transforming to plane polar coordinates evaluate the integral
1 v 1—9y2
/ / ydxdy .
y=0Jrx=—y/1—y2
[7 marks]

1.7) Given the vector field E = zi+ 2yj+zk calculate the line integral [, ¢ E.dr where
C' is the straight line from (0,0,0) to (1,1,1).
[7 marks]
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The Fourier series representation of the function
flz)=2% -T/2<z<T/2,
is
B T2 T2 (_1)7’1,
12 w2 n2
n>1

Sketch the function F'(f(x)) in the interval —3T/2 < x < 3T /2. By considering
the value of F at « = T'/2, find the sum of the series

F(f(x))

cos2nmx /T .

1 1 1
I+ttt

[7 marks]

SECTION B — Answer TWO questions

The behaviour of a forced damped simple harmonic oscillator is determined by
the differential equation

d*y dy

T2 +2ka+y: 2cost,

where k£ < 1 represents a damping term and y is the amplitude of the motion.
Find the general solution of this equation for the amplitude as a function of
time f.

[8 marks]

What is the solution applicable when kt > 17
[2 marks]

If the damping term is absent, the differential equation for the motion becomes

d2
%g—{—y:Zcost.

Show that a particular integral of the equation is
1 .
yr(t) = —5 cost +tsint,

and determine the general solution of the equation.
[12 marks]

What is the dominant term of the solution as + — oo? Why does the absence
of damping change the behaviour so radically?
[8 marks]
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If x is an eigenvector of the matrix A with eigenvalue A, prove that A”x = A"x
for all n > 1.
[5 marks]

A system can exist in two possible states. The vector yg = ( 1 g p)’ with

0 < p < 1, represents the probabilities of the system being in one or other of
the two states at time ¢ = 0. At each time step the system moves to a new
state determined by a transition matrix A, that is, at time ¢ = 1 the system is
in state y; where y; = Ayg. The transition matrix is

A (213 12
“\1/3 1/2) "
Given that one eigenvalue of A is 1, find the other eigenvalue and the corre-

sponding unnormalised eigenvectors x; and Xs.
[15 marks]

The initial state yy can be expressed as a linear combination of the eigenvectors,
that is, yo = a1x1 + a9Xs. Find the coefficients ay and as.

[5 marks]
Hence deduce that, for a very large number n of time steps,
n 3/5
Ayy — (2/5> as n — 00.
[5 marks]
Calculate divA and curl A when A = xyi + yzj + zzk.
[5 marks]

Gauss’s theorem states that

/divAdv:/A.dS,
v s

where A is a vector field and V is the volume enclosed by a regular closed surface
S. Verify Gauss’s theorem directly for the given vector field A when V is the
volume of a cube with one corner at the point (0,0,0) and three other corners at
(2,0,0), (0,a,0) and (0,0,a). [Hint: make use of the symmetry of the problem.]
[13 marks]

State Stoke’s theorem.
[4 marks]

For the same vector field A, verify Stokes’ theorem by evaluating a surface
integral and a line integral, where the surface is the square in the z = 0 plane
whose corners are at the points (0,0,0), (a,0,0), (a,a,0) and (0, a,0).

[8 marks]
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5) The complex Fourier series of a function f(z) in the range —T/2 < x < T/2 has
the form

F(f($)): Z cne%nww/T

n=—oo

where

| T2 _
Crn, = —/ f(x)e_zmm/de.
T J_1/2

Show that the complex Fourier series for the function

| -A, —T/2<z<0,
f(x)_{A, 0<z<T/2,

is

F(f(x)) = 4 Z wezmm/:ﬁ

X 7
n=—oo
n#0
[16 marks]
Use Parseval’s theorem to show that
2 R
ol Tt
[14 marks]
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