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Pauli matrices are given by
1 0 1 1 0 —i 1 1 0
S“’_2h<1 0)’ Sy_f‘(z‘ 0)’ Sz_f‘(o —1)'

SECTION A — Answer SIX parts of this section

1.1) A particle bound in one dimension is described by the normalised wave function

Q/J(x):{\/geik“’cos?m;", |z |< L/2,

0, elsewhere .

Show that the probability of finding the particle between z = 0 and = = L/4 is
approximately 0.2.

Note: cos20 =2cos?h — 1.
[7 marks]

1.2) In three dimensions, the time-dependent Schréodinger equation is

R, L

Which variables is ¢ a function of ? What do the symbols ¥, r,t,m, h,V,i, V?
and J in the equation represent? Write the equation in terms of the Hamiltonian
operator H for the system, and interpret the various terms in H.

[7 marks]

1.3) The possible energies of a particle in a cubic box of side a are given by
Enl,n2,n3 - (nlz + n22 + n32)€7

where n1, no, n3 are positive integers and ¢ is a constant. Find the energy of the
ground state and the energy of the next lowest non-degenerate excited level in
terms of the energy e. How many degenerate levels lie between the lowest and
next lowest non-degenerate levels, and what are their degeneracies?

[7 marks]
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1.4)

1.5)

1.6)

1.7)

1.8)
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A particle of mass m and energy F is bound (E < 0) in an attractive one-
dimensional square-well potential

_ _V07 |-’17|<CL,
V(x)—{(), |z |>a.

Show that, in the inner region, the Schrodinger equation has oscillatory-type

solutions and, in the outer regions, exponential-type solutions.
[7 marks]

Use the correspondence principle to derive representation-free operators for the
Cartesian components of the angular momentum operator L. Hence, write down
a Cartesian expression for L, in the Schrodinger representation.

[7 marks]

The quantum numbers n, £, my, and m, appear in the theoretical treatment of
the hydrogen atom. Give their allowed values and explain briefly which physical
properties are determined by them.

[7 marks]

Calculate the eigenvalues of the operator S, representing the y—component of
the spin angular momentum of a spin-% particle. Normalise the corresponding

a (1) A (Y

and verify that they are orthogonal.

eigenvectors

[7 marks]

At a given instant, a quantum harmonic oscillator is in a state described by the
normalised wave function

$(2) = La@) + 2us(a).
where u, () is the normalised energy eigenfunction of the oscillator correspond-
ing to an eigenvalue F,, = (n + %)hw, n=20,1,2,.... Calculate the expectation
value of the energy of the oscillator in the state .
[7 marks]
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SECTION B — Answer TWO questions

2) In spherical polar coordinates (r,0,¢), the components of the orbital angular
momentum operator are given by

.., 0 0
L, = ih(sin ¢% -+ cot 8 cos q§%) ,
L, =ih(— ¢£+ t 6 in¢2)
y =1 cosgpog +cotf's 56’
.0
LZ——Zh%

Using this representation, prove the commutation relation

(L., Lg| = ihL,

[12 marks]
and, by cyclic interchange of the variables, write down the commutators that
equal 1AL, and ihL, .

[3 marks]

What are the physical implications of the commutation relations for angular
momentum?
[3 marks]

Show that the spherical harmonic
Y2.2(0, ¢) = sin®0e?®

is an eigenfunction of the operator L, and determine the corresponding eigen-
value.

[4 marks]
The spherical harmonics Yy ,,, are simultaneous eigenfunctions of L, and O with
eigenvalues ph and Ai?, respectively. What is the operator @7 Give the values
of p and A in terms of £ and m.

[4 marks]

Give a simple physical argument which constrains the values of m for a given
value of /.
[4 marks]
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The normalised energy eigenfunction for the ground state of the hydrogen atom
has the form

u(r) = Aexp(—r/aop) ,

where aq¢ is the Bohr radius and A is a normalisation constant. Derive an
expression for the probability, P(r)dr, that the electron lies within a spherical
shell with radii » and r + dr.

[6 marks]

Prove that the normalisation constant
A= (7'('0,03)_% .

[6 marks]
Deduce the most probable value of the radial coordinate r.

[6 marks]
Finally, calculate the mean value of r

[6 marks]
and its standard deviation, Ar.

[6 marks]

Note: You will find the following integral useful,

!

- n!
e rdr = —

0 ()/n‘i‘

where the constant a > 0 and the integer n > —1.

A beam of particles of mass m and energy F is incident from z < 0 upon a
potential step at = 0 of height V, (< E). Let

_ 2mkE 5 2m

k2 hg ) K:?(E_Vb)7 n=

K

E )

and the incident particles be represented by the wavefunction e”**. Calculate
the reflection coefficient R and the transmission coefficient T as functions of
L.

[24 marks|

Hence demonstrate explicitly that R +7 = 1. What is the physical interpreta-
tion of this equation?
[6 marks]

5 SEE NEXT PAGE



CP /2201

5) Consider a beam of neutral spin-% particles, travelling along the y—axis, that has
passed through the positive channel of a Stern-Gerlach SGZ-apparatus. It then
passes through an SG#-apparatus orientated to measure the spin component in
the zz-plane at an angle 6 to the positive z-axis. The operator Sy representing
the component of spin angular momentum in this direction is given by

1 .
Se = 11 (cos@ sinf ) .

2 sinf —cosf

Verify that the eigenvectors of Sy are

cosg —sing
Qg = -8 ) 69 = 2]
S1H§ COS§

and find the corresponding eigenvalues.

[7 marks]
Calculate the relative intensities of the exit beams
[14 marks]
and interpret the results when # =0, 5 and 7.
[9 marks]

Note: You may find the following relations useful,
sin(A — B) =sin Acos B — cos Asin B,
cos(A — B) = cos Acos B +sin Asin B,
sin2A4 = 2sin Acos A,
cos2A =1—2sin’A = 2cos2A4 — 1.
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