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1.4)
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Pauli matrices are given by
1 0 1 1 0 —i 1 1 0
sx_2h<1 O), sy_ﬁ(z. O), 52_25(0 _1).

SECTION A — Answer SIX parts of this section

A particle moving in one dimension is confined to the interval | z |< a and is
described by the wave function

T
z) = Acos —,
¥() ik
where A is a normalization constant. Determine A and find the probability that

the particle is in the region x > 0.

Note: cos20 = 2cos26 — 1
[7 marks]

Define an hermitian operator and prove that all its eigenvalues are real.
[7 marks]

At a given instant, a quantum harmonic oscillator is in a state described by the
normalized wave function

h(z) = \/guf)(w) + \/gul(w) + \/2%4(33) :

where u, () is the normalized energy eigenfunction of the oscillator correspond-
ing to an eigenvalue F,, = (n + %)hw, n = 0,1,2,.... What are the possible
results of a measurement of the energy of this system and what are their rela-
tive probabilities? Using these probabilities, show that the expectation value of
the energy of the oscillator is %hw.

[7 marks]

Give the Schrodinger representation of the operators z and p, representing the
position z and the z—component of the linear momentum, respectively. By
operating on a general wave function ¥ (x,y, z), prove that

[zvpz] =2Zp, —P.2 = ih.
Are the operators z and p, compatible or incompatible? What does this imply

physically?
[7 marks]
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1.6)

1.7)

1.8)
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Explain briefly what is meant by the correspondence principle. Use it to derive
representation-free operators for the cartesian components of the angular mo-
mentum operator L.

[7 marks]

Write down Schrodinger’s equation of motion for a particle confined to the
x—axis. Derive particular solutions in which the spatial () and temporal (t)

variables are separated.
[7 marks]

An electron is in the spin state

1 /2
=70
V5 \ 1
Calculate the expectation value in this state of the spin component S,. What is
the probability that, on measurement, the electron will be found in the spin-up

state?
[7 marks]

Write down the Schrodinger equation for the hydrogenic atom. Discuss the r,
# and ¢-dependence of the bound state solutions paying particular attention to
the role played by the quantum numbers n, £ and my.

[7 marks]

SECTION B — Answer TWO questions

Describe two of the following:

the photo-electric effect and the way in which it provides evidence for the particle

aspects of electromagnetic radiation,
[15 marks]

the Davisson and Germer experiments and the way in which they provide evi-
dence for the existence of matter waves,
[15 marks]

the Bohr model of the hydrogen atom and the way in which it provides a de-
scription of the optical spectrum of hydrogen,
[15 marks]

the Stern-Gerlach experiment and the way in which it provides evidence for the
existence of electron spin.
[15 marks]
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A beam of neutral spin-% particles travelling in the y—direction passes through a
Stern-Gerlach apparatus. The spins in the two exit beams are in the eigenstates

of S,
1 /1 1 /-1
wmpli) om0

All particles in the entry beam are in the eigenstate ay corresponding to the
eigenvalue —0—%/‘1 for the component of spin angular momentum in a direction
aligned at an angle 6 to the positive z—axis in the zz—plane. Prove that

(cosg )
059 — .0
Sln§
[15 marks]

and show that the relative intensities of the exit beams are Z(1 = sin6).
[15 marks]

In spherical polar coordinates (r, 0, ¢), the components of the orbital angular
momentum operator are

.., 0 0
L, = ih(sin ¢% -+ cot 8 cos q§%) ,
L, =ih(— ¢£+ t 6 in¢2)
y =1 cos ¢ 7 +cot fs 99
.0
LZ——Zh%

State the commutation relations between pairs of angular momentum compo-
nents and compare your results with the corresponding relations between com-
ponents of the linear momentum. What are the physical implications of these
commutation relations?

[7 marks]

Show that the function

Yi0=rcosf
is an eigenfunction of the operator L, and determine the corresponding eigen-
value.
[3 marks]
Evaluate the function
Yl,—l = (Lz — iLy)Y170

and show that it is an eigenfunction of L, with eigenvalue y = —Fh.

[16 marks]

The functions Y7 o and Y7 _; are eigenfunctions of which other operator?
[4 marks]
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Note.
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Consider a particle confined to the infinite square-well potential

0, O<zx< L,
o0, elsewhere.

Vo) = {
The time-independent energy eigenfunctions are of the form

u(z) = Asinkzx .

By considering the boundary conditions, find the allowed values of k;

[5 marks]
By applying the normalisation condition, show that A = \/2/71’3

[5 marks]
Show explicitly that different eigenfunctions are orthogonal;

[5 marks]

By substituting the eigenfunctions into Schrodinger’s equation, determine the
energy eigenvalues;
[5 marks]

Calculate the mean value of x for each eigenfunction;
[5 marks]

Suppose that, at a certain time, the particle is in the state

¢( ) 1 . 7T.’17+1 1 . 27m:+1 3 . Adnx
= — S11n — — S11n — — S1imn — .
VN T TV . VTP

Determine the probability that, on measuring the particle’s energy, one obtains
a value corresponding to (a) the ground state, and (b) the first excited state.
[5 marks]

You will find the following integrals useful:

™
. . T
/ sin mx sinnx dr = §5m’n
0

2

T o T
rsin“mxdr = —
0 4

where m,n =1,2,3,... and 0, 5, is the Kronecker delta.
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