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SECTION A — Answer SIX parts of this section

A ball falling through a vacuum in a uniform gravitational field has a height z
which obeys the equation

d?z B

az ~ 7

where ¢ is the acceleration caused by gravity. At time £ = 0 a ball is thrown
vertically upwards from z = 0 with an initial speed 1/2g. Show that the height
reached at the time ¢ = \/% is z=1.

[7 marks]

When a gas expands adiabatically the volume V' and pressure P obey
Cp  CydP
vipPay

where C,, and C, are constants. Show that in the adiabatic expansion PV™ is
a constant with n = C,/C,.
[7 marks]

The reflection of a point (z,y, z) in the z = 0 plane is described by the matrix

—1

0
0 1
0 0

_ o o

and the rotation of a point about the z axis through an angle o is given by the
matrix

cosa —sina 0
sinae cosa O
0 0 1

Show by matrix multiplication that a reflection followed by a rotation does not

produce the same result as rotation followed by reflection.
[7 marks]

Find the two eigenvalues k of the eigenvalue equation
4 —1 T T
(2 1)) -+(0)
[7 marks]
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1.5) Calculate divA and curlA when A is the vector yi+ zj + zk.
[7 marks]

1.6) The height of a hill above the (x, y)-plane is given by the function

1

il Erer)

What is the slope of the hill at the point (1,0) in (a) the direction of the x-axis,

and (b) the direction of the y-axis?
[7 marks]
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1.7) Calculate the value of the line integral

/ rdr
c

where r = xi + yj and C is (i) the line y = = from the point (0,0) to (1,1) and,
(ii) the two straight lines from (0,0) to (1,0) and from (1,0) to (1,1).
[7 marks]

1.8) The Fourier series representation of the function f(z) = x, when one period of
the Fourier series lies in the interval [—a/2,a/2], is

What is the value of the Fourier series representation at x = a/2, and is this

the value you would expect?
[7 marks]
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SECTION B — Answer TWO questions

A mass m hangs stationary on the end of a weightless spring. When the mass
is pulled down through a small distance and then released, its position varies
with time ¢ according to

d?z . dx . 0

Mm—s +1r— +cxr =
dt? dt

where x is the extension of the spring measured from the equilibrium position,

and r and ¢ are constants. The mass is adjusted so that

r? = dme.

Show that the auxiliary equation method gives one solution for x of

T = A e—rt/ 2m
where A; is an arbitrary constant.
[5 marks]

Verify that a second solution is 2z = Ayte"*/2™ where Ay is another arbitrary
constant.
[10 marks]

The mass is initially at rest in the equilibrium position 2 = 0, but at £ = 0 it
is suddenly pulled down at a speed dxz/dt = u. Show that at later times the
position of the mass is given by

T = ute~"H/2m,

[7 marks]
Show that the maximum value of z occurs at a time
t=2m/r
and derive the value of that maximum value of 7.
[8 marks]

You may assume that the solution to

d?x dx
— +b— =0
adt2 + 7 +c

is
x = Aje™?t L Aje™2t

where m; and mo are the roots of the auxiliary equation am? + bm + ¢ = 0.
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A radioactive species A decays into a second species B, which in turn is unstable.
At time ¢t = 0 there are Ny atoms of A, and none of B. The rate at which the
nuclei of A decay is k4 N4 where k4 is a constant. The rate of decay of species
B is kg Ng where kg is a constant and Npg is the number of atoms of B.

Show that Np obeys

dN
(TB + kpNp = kaNgexp(—kat).
[7 marks]
Hence show that if k4 # kp and Ng =0at £t =20
kaNg —kat —kpt
Np = At _ B
B kB _ kA (6 € ) )
[8 marks]
and that the maximum number of B atoms occurs at the time
1
b= — L (kY
kg —ka ka
[15 marks]

You may assume that the solution to dy/dx + Py = @ where P and @ are
functions of x is

y=e1 /QeIdx + et

where ¢ is a constant and I = [ Pdz.
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Calculate div A when A = /22 + y2(zi + yj).
[7 marks]

The transformation from Cartesian coordinates (z,y, z) to cylindrical coordi-
nates (r,0,z') is given by

x=rcosl, y=rsinf, z=12".

Show that the Jacobian of the transformation is r.
[7 marks]

The divergence theorem states that

/divAdv:/A.dS,
v s

where A is a vector field and V' is the volume bounded by a simple closed surface
S. Verify the divergence theorem directly for the given vector field A, when the
volume V is the cylinder 22 +y? < 4, 0 < z < 5, by using cylindrical coordinates
to perform the volume and surface integrals. You are given that the value of
both integrals is 807.

[16 marks]

Expand f(z) = |z| as a cosine Fourier series in the range —7/2 < x < T/2. The
general form for such a series is

o0

flz) = ;ao + Zan Cos (2277”0)

=1

where a,, = %fjf//;f(a:) cos(2nmz/T)dx, for n = 0,1,2..., and T is the pe-
riod.

[16 marks|By considering the value of the Fourier series at = 0, show that

TR S S w2
2t =g
What is the value of the Fourier series at x = T/27?
[7 marks]

Sketch the Fourier series representation of f(x) in the interval —%T <z < %T.
Add to your sketch the function obtained by including only the first two terms
of the Fourier series.

[7 marks]
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