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1.1)

1.2)

CP/3630

SECTION A — Answer SIX parts of this section

Describe the structure of a simple accelerometer.

Two spaceships travel in free fall in approximately parallel tracks. The ac-
celerometers carried by each spaceship all register zero.

Describe a situation where nevertheless the velocity of one spaceship with respect

to the other is not constant.
[7 marks]

In the neighbourhood of the Earth (Schwarzschild radius = a) we have the
following two facts:

(i) an artificial satellite in a circular Earth orbit of radius r moves with speed v,

where v? = ac?/2r,

(ii) a clock at distance r moving with velocity v runs slow compared to an infinitely

1.3)

remote stationary clock by the factor

v2  q
-5 -2
¢ r

Deduce from these facts that a clock in free circular orbit of radius 2 x(Earth
radius) will keep step with a similar clock fixed at the North Pole of the Earth.
[7 marks]

Two initially synchronised atomic clocks mounted in conventional aircraft are
each flown once round the equator of the Earth, in opposite directions. They
meet again after landing at their original take-off point. Which clock now shows
the later time? Give a reason for your answer.

[7 marks]
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1.4)

1.5)

1.6)

CP/3630
The spacetime metric in the neighbourhood of the Earth is

dr?

Adr? = 21— a/r)dt? — T —alr

— r2d6? — r?sin? Ad¢2,

where a is the Schwarzschild radius and r, 0, ¢ are spherical polar coordinates.
Two events (t,71,0, ¢) and (¢, 79,8, ) occur simultaneously, and in line with the
centre of the Earth. Show that the actual radial distance D between the events
is

D—/T2 dr
B - \/l—a/r.

Verify the approximation

d 1
/ L —alnr+ O(a?)
V1—a/r 2
and use it to show that within 10 km above the surface of the Earth the
discrepancy between D and ro—rq is at most a few centimetres. (Approximately,

radius of the Earth = 7 x 10% km, a = 1 cm.)
[7 marks]

The metric for plane polar coordinates (r,0) is ds? = dr? 4+ r2df#2. Assume that
any geodesic in the plane must satisfy both

P2 +720°=1 and r%0= a,

where the value of the constant a depends on the geodesic.

Verify that these requirements are satisfied by

r(s) = \/82—{—7,

0(s) = By + arctan 2
a

Use a sketch to interpret the meanings of the constants a and 6.
[7 marks]

Explain how an inhomogeneous gravitational field manifests itself as a tidal
force, affecting even a body in free fall.

A hollow sphere containing dust, but otherwise empty, is in free fall in a circular
Earth orbit. Where inside the sphere will the dust tend to collect? Give reasons
for your answer.

[7 marks]
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1.7)

1.8)
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A small clock, displaying proper time 7 and originally at rest in the infinite past,
is now falling radially through the Schwarzschild metric of a black hole of radius
a =1 cm. Assume that its motion is described by

r =ax?, 8 = const, ¢ = const,

2 4 2 4 r—1
= t=a | — 2 +1 .
cr =gar’, ¢ 0<3:IJ+ T+Dm—{—1)

The parameter x increases from —oo through negative values. The other symbols
have their usual meanings.

Show that a remote observer’s last glimpse of the clock corresponds to z = —1,
and that the clock itself survives for a further proper time of 2.2 x 10~ s.
(Ignore the catastrophic effect of tidal forces.)

[7 marks]

The Robertson—Walker metric for a smooth uniform universe is
dr? = dt* — [R(t)]?dS?,
in which dS? is the metric of a homogeneous 3D curved space. The curvature

of the 3D space may be any of positive, zero, or negative; R(t) is the scale at
epoch t. Assume that the matter density in such a universe is

dR\?
= k
(%) +

where £ is a constant which may have either sign.

B 3
- 8TR2

p

?

If we are dealing with a dust-filled universe, for which pR3® = constant, show

that R(t) satisfies
dR\* A-kR
/) R

in which A is a positive constant.

Show qualitatively that if dR/dt is currently greater than zero, then R(t) must
have been zero at some f in the past.
[7 marks]
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(i)
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SECTION B — Answer TWO questions

The Schwarzschild metric in the neighbourhood of a spherical mass is, in the
usual notation,

2

1—a/r

Adr? = (1 — a/r)dt? — — r?(d6® + sin® 0d¢?).

Using the general relation

op— ()2

dr \ 0z# Oxt’
find F;, Fy, Fp, and Fy. Hence show that one contravariant component of F is

r_ ., ac}(r—a) a 22 12 202
F" =i+ 53 t _27‘(r—a)r — (r—a)f” — (r — a)sin® 6¢°.

[14 marks]

Show that for an equatorial circular orbit (with @ = 7/2) centred on the spherical

mass, F" reduces to
: 2 deo\ >
Fr=@r-a)i2|2 - (%2) .
(r—a) [27‘3 (dt) ]

[5 marks]

Show that for a free-fall circular orbit (as followed for example by a typical
Earth satellite) the third Kepler Law is satisfied.
[4 marks]

For a laboratory built at the equator of the Earth, show that to good approxi-
mation )
F" = ﬁ —r do .
272 dt

[4 marks]

Interpret each term in this equation.
[3 marks]

5 SEE NEXT PAGE



3)

(i)

(iii)

Note:
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The differential equation which governs a planetary orbit 1/r = wu(¢) in a
Schwarzschild metric of Schwarzschild radius a is

du 2
(u) = (u —u1)(u2 —u)(1 — auy — aug — au).
do

Here the constants uy and us are respectively the values of 1/r at aphelion and

perihelion.

Show that the substitution

U] + qu2

/111 = —-——
1+ ¢?

in the differential equation results in

dg 1 5 U1 + uzq?
i §(1+q )\/l—au1 —aw—aW.
Deduce that the change in ¢ between consecutive perihelia is

2dq

A = .
- cyf e

1—auy —aus —a

[14 marks]

For a large enough circular orbit, show that A¢ = 27/4/(1 — 3auy). Hence de-
duce the approximate perihelion precession per circuit for a very nearly circular
orbit.

[11 marks]

Discuss qualitatively what happens for a very nearly circular orbit when
1 / U1 S 3a.
[5 marks]

You may assume that [*_ 1?_‘(112

= T.
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(i)

(iii)

Note:

CP/3630
A model universe is described by
dr? = dt* — at*"dQ?

where o and n are constants, and d2? is the metric for a homogeneous isotropic
curved three-dimensional space. In all that follows, differentiation with respect
to ¢ is denoted by a dash: f’ denotes df(t)/dt, and so on.

Evaluate the energy density p and the pressure p as functions of the epoch ¢ and
verify that they are related by the adiabatic requirement

3n
p+ 7(p+p) = 0.

[9 marks]

Relate this result to the conservation of energy during the adiabatic expansion
of a gas enclosed in a container with a variable volume V.

Discuss the validity of conservation of energy for the universe as a whole.
[9 marks]

For the case when the space-metric dQ? is flat, show that the equation of state
which relates p and p simplifies to

2
= ——1).
p P(?m )

By considering the instances a) dust, and b) pure radiation, show that if the
metric with flat d©2 is to be used as a model of a universe with conventional
behaviour, then

[5 marks]

<n<

N | =
Wl

[7 marks]

For the metric

dr? = dt* — [R(t)]2dQ?

you may assume that p(t) and p(t) are related to the scale-factor R by

3(R? + k)
R2

R?+k 2R
R? R

8mp = and 8mp=—

in which £ is the curvature of the homogeneous isotropic three-dimensional space
with metric dQ2.
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5)

(i)

(iii)

(iv)

(v)
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A surface of infinite extent is described by a pair of coordinates v and v, in the
ranges 0 < u < 0o and —oo < v < co. The metric for the surface is

o du® +do?

ds 5

U

Obtain two first integrals, relating u, du/ds, and dv/ds, to be satisfied by any
geodesic. Deduce that for every geodesic u and du/ds must satisfy a relation

2
(?) = u? — Aut,
s

in which A is a non-negative constant.
[6 marks]

Verify that, when A = 0, the most general solution is
° = e:l:(s—so)7 v = vy,

in which sy and vy are constants of integration. Explain why it is sufficient to
adopt

as a general solution.

[6 marks]
Verify that for A > 0, a general solution is
" C o (C'sinh s
~ coshs’ N coshs ’
provided that C' > 0 and AC? = 1.
[10 marks]

Show that in (iii) u?+ (v —vg)? = constant. Hence show that in a map for which
u and v are Cartesian coordinates the geodesics are represented as semicircles.
[4 marks]

In the (u,v) diagram, sketch a few examples of the geodesics in each of (ii) and
(iii) above.
[4 marks]
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