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SECTION A — Answer SIX parts of this section.

State the Principle of Equivalence.
A spaceship with engine running is poised, stationary, just above its launch
pad on Earth. An identical spaceship with its engine running exactly as
the first is in deep space. Among other things, the Principle of Equivalence
claims that the relative difference in clock-rate at bow and stern is the same
on either spaceship.
Justify this claim by relating the Pound-Rebka effect (in one case) to the
Doppler shift (in the other case).

[7 marks]

Two similar aircraft are at the same airfield on the equator of the Earth.
Each carries an accurate clock; these clocks are identical, and have been
synchronised. Aircraft A then flies easterly once round the equator, at an
agreed altitude, and lands again at the airfield. Aircraft B does the same,
but in the westerly direction. When compared, the clock on aircraft B is
now found to show a time lafer than shown by the clock on aircraft A.
Explain how this result may be predicted in the context of General Relativity.
[7 marks]

A hollow sphere containing dust is in orbit round the Earth. Where in the
sphere will the dust tend to collect, and why?
Relate this effect to the tidal effect of the Moon upon the oceans of the
Earth.

[7 marks]

On account of the centrifugal force associated with the rotation of the Earth,
sea-level at the Equator is many kilometres higher than at either Pole. Ex-
plain why nevertheless all clocks at sea-level run mutually in time.

[7 marks]

A two-dimensional surface with coordinates x and y has the metric
ds? = (dz® + dy?) exp 2z.

Verify that a geodesic on the surface may be described parametrically by
functions z(s) and y(s) defined by:

z(s) = 2+ In(s® +a?), and

s
y(s) = yo + arctan —,
a

in which a and yo are arbitrary constants.
[7 marks]

SEE NEXT PAGE
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A two-dimensional surface with coordinates u and v has the metric
ds? = (du® + dv?) exp 2u.

Determine the eight Christoffel symbols.
[7 marks]

A two-dimensional ‘spacetime’ has the metric

dz?

2gx

2
Adr? =2 (1 + g2$> de? —
c 14

c2

in which ¢ is a constant with the dimensions of acceleration. Assume that
the motion of a certain particle in free fall is specified parametrically by

C c+ gt
r=—5g7", t=—1In .
29 c—gT1

Examine the behaviour of z, of ¢, and of the metric, as 7 goes from —oo to
400. Relate this behaviour to the concepts of black hole and event horizon.
[7 marks]

A two-dimensional surface with coordinates # and ¢ has the metric
ds? = d6? + sinh? 0d¢>.
Assume that three of the Christoffel symbols are

cosh 8
sinh 6’

F9¢¢ = —sinh fcoshd, F¢9¢ = F¢¢9 -

the remaining five being zero.

Show that the curvature of the surface is —1 everywhere.
[7 marks]

SEE NEXT PAGE
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SECTION B — Answer TWO questions.

2) A region of spacetime carries the coordinates ¢, z, y, z, and its metric is given

by
20 dr? + dy? +dz?
Adri=c 1+ =) dt? - T Ay Z,
c? 20
I+
C

where the function ®(z,y, z) is a scalar field. (Differentiation with respect to
7 will be denoted by a dot. Also @, will be written for 9®/0z, and similarly
for &, and ®,.)

(i) Obtain L (the Lagrangian) and 9L /9L, and show that, for any free-fall
motion,

1
5(&:2 + 9% + %) + ® = constant,.

[9 marks]

(ii) Obtain the component F of the fourvector F by

d [OL oL
= (a—x) TS

and show that

F* = G-

2&(2®, + §Py, + 2P,) 1222 g, (&% + g% + %),
2+ 2P c2 " c +20 ’

[9 marks]

(iii) Show that in the Newtonian limit of infinite speed of light (¢ — o0)
and universal time (f — 1), F reduces to

F* =3+ ®,.

[5 marks]

(iv) Use the results of (i) and (iii) above to interpret ® as gravitational
potential energy per unit mass in the Newtonian limit.

[7 marks]

SEE NEXT PAGE
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3) The differential equation governing the shape of a general equatorial free-fall
orbit in a Schwarzschild metric, with coordinates ¢, r, 6, ¢, is

du\?
o = 3— 2
(qu) au® —u” + au+ f,

where v = 1/r and a is a constant. The size and shape of the orbit are
related to the values of the parameters o and .

(i) Verify that one instance of this differential equation is
du\” 1\?
— | =aulu——) .
d¢ 2a

(ii) A new variable v is defined by 2au = v, with v > 0 always. Show
that the differential equation shown in (i) implies that v must satisfy

[2 marks]

dv

1
— =4—(*—1).
[3 marks]
(iii) Describe the orbit which corresponds to the solution v = 1.
[2 marks]

(iv) Verify that a more general solution v(¢) of the differential equation in
(ii) is defined by
-1
Y = Aexp a

v+1 E

in which A is a constant of integration.

[6 marks]

(v) If A <0, show that 0 < v < 1, and that the corresponding orbit takes
a spiral shape with 7 in the range 20 < r < co. Discuss the range of
values of ¢.

[8 marks]
(vi) Discuss similarly the case A > 0.
[9 marks]

SEE NEXT PAGE
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4)  The Robertson-Walker metric for a smooth uniform universe is
d7r? = dt? — [R(t)]* dS?

in which dS? is the metric of a homogeneous three-dimensional curved space
of constant curvature k£ (= 1,0, or —1), and R(¢) is the scale at epoch ¢.
Assume that the mass density and pressure in such a universe are given by

dR\ 2

= k

(%) =+,
2

(Cj) g

(i) Verify that p, p, and R are related by

3
87Tp: ﬁ

1
87Tp: _ﬁ

2@
R di2’

dp
4 Tt

3 dR
2o,
R dt

[6 marks]

(ii) Assume that for black-body radiation, p = 1p. Show that pR* is a constant
for a universe filled with black-body radiation alone.

[5 marks]
(iii) For a universe in which pR?* is a constant, show that R(t) satisfies the dif-

ferential equation
drR\* A?
dt /| R2

in which A is a constant.

[3 marks]
(iv) Verify that solutions R(t) to this differential equation are given by

p2_ JR(AZ=1%) ik = L1
+2 At if k=0.

[7 marks]

(v) For each value of k, sketch graphs of R against ¢, wherever R is real and pos-
itive. By inspecting the sketches, or otherwise, show that if R(¢) is currently
increasing as ¢ passes, then a Big Bang must have occurred at some time in
the past.

[9 marks]

SEE NEXT PAGE
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A surface of infinite extent is described by a pair of coordinates u and v, in
the ranges 0 < u < 0o and —oo < v < 0o. The metric for the surface is

(1)

(i)

(iii)

(iv)

o, du® +dv?

ds 5

u

Obtain two first integrals, relating u, du/ds, and dv/ds, to be satisfied
by any geodesic. Deduce that for every geodesic u and du/ds must

satisfy a relation
du\? 5 4
ds) —w A

in which A is a non-negative constant.
[6 marks]

Verify that, when A = 0, the most general solution is

uh = e:l:(s—so)7 v = vg,
in which sy and vy are constants of integration. Explain why it is
sufficient to adopt

u=e5, v = Ug

as a general solution.

[6 marks]
Verify that for A > 0, a general solution is
" C S (C'sinh s
~ coshs’ %7 “coshs
provided that C' > 0 and AC? = 1.
[10 marks]

Show that in (iii) u? + (v — vg)? = constant. Hence show that in a
map for which u and v are Cartesian coordinates the geodesics are
represented as semicircles.

[4 marks]

In the (u,v) diagram, sketch a few examples of the geodesics in each
of (ii) and (iii) above.

[4 marks]
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