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Physical Constants

Permittivity of free space
Permeability of free space
Speed of light in free space
Gravitational constant
Elementary charge
Electron rest mass

Unified atomic mass unit
Proton rest mass

Neutron rest mass

Planck constant
Boltzmann constant
Stefan-Boltzmann constant
Gas constant

Avogadro constant

Molar volume of ideal gas at STP

One standard atmosphere
Schwarzschild metric (SM)

(in units with Gy = ¢ =1)

Shell coordinates in SM:
Christoffel symbols:

Riemann Curvature Tensor (RCT):
Properties of RCT:

Ricei tensor:

Cosmic Horizon in

Friedmann-Robertson-Walker Universe:

€0 =8.854 x 1072 F m™!

po =4m x 107" Hm™!
c=2.998 x 108 m s!

Gy =6.673 x 107" N m? kg™!
e=1.602x 107" C

me = 9.109 x 1073 kg

my = 1.661 x 102" kg

m, = 1.673 x 107%" kg

my, = 1.675 x 10727 kg

h =6.626 x 1073 J s

kg = 1.381 x 1072 J K~}
0c=5670x10*Wm?2K™*
R =8.314 J mol~! K1

Nj = 6.022 x 10?3 mol *
=2.241 x 102 m?

Py =1.013 x 10> N m~2
ds? = — (1= 20) dg? 4 (1 — 20) " gr2y
+r? (d6? + sin*0d¢?)
dtshen = (1 — 22124t 5 drgpen = (1 — 22)~124dr
I = %gaﬂ(gﬁu,v + Gpup — Guw,8)-
Raﬂuv = Faﬁv,u - Faﬁu,v + FaanﬂV - FaWFnﬂ# :
Roguw = —Rgapw = —Rapuy = Ruvags -
R,, = R,, = R,
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SECTION A - Answer SIX parts of this section

1.1) Consider the effective potential of the Schwarzschild solution:

('~ (- 20) - 42

where the symbols have their usual meaning. Discuss qualitatively the main features
of the motion of a satellite of mass m in this potential. Compare these with the
Newtonian case, stressing the main differences.

[7 marks]

1.2) Consider a space time whose Ricci tensor has the form R,, = Ag,,, where the
constant A > 0, and g,, is the metric tensor. Show that this space time is an exact
solution of Einstein equations without matter but with a cosmological constant, and
determine this constant in the case of four space-time dimensions.

[7 marks|

1.3) Wien’s law of thermodynamics states that the maximum of thermal radiation spec-
trum has a wavelength A, which changes with the temperature T;.,q of radiation
according to: ApaxTraq = constant. Moreover, the thermal radiation satisfies the law
of Black-Body radiation according to which its energy, and hence its mass density,
Prad, Scales with the temperature as:

4

rad
prad = C2

where « is the radiation constant. Using the cosmological redshift, which you should
state without proof, and the above expression, show that

—4
Prad X @ )

where a is the scale factor of a Robertson-Walker Universe.

[7 marks|

SEE NEXT PAGE



CP3630

1.4) Consider an ideal fluid in a four-dimensional Minkowski space time with metric
nw = Diag(—1,1,1,1).

(i) Write down the conservation law of energy and momentum in terms of the stress
tensor 7T}, of the fluid in a covariant form. Consider the stress tensor T, = —|B|*1,,,
where B is a constant. Explain whether or not this satisfies the conservation law.

(ii) how is the conservation law modified in the case of a general metric g,,7 in that
case, does the tensor T8" = —|B|*g,, satisfy the conservation law and why?

[7 marks]

1.5) Explain qualitatively how the theory of Big-Bang accounts for the fact that the sky
is dark at night.

[7 marks]

1.6) Consider two observers who are static with respect to each other as well as to the
Earth. Light at frequency v is emitted by one observer, and received at frequency /'
by the other who lies at a height H directly above the first, in the gravitational field
of the Earth. The gravitational redshift implies that there is a change in frequency
v — V' between the emission (v) and reception (¢') points, given by:

vV —v gH

v c?

where ¢ is the acceleration of gravity, and the height H is assumed relatively small,
so that ¢ is approximately constant. Using appropriate space-time diagrams, explain
briefly how the above phenomenon cannot be compatible with special relativity.

[7 marks]
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1.7) Which of the following expressions represent a proper invariant line element in gen-
eral relativity, and why?

(i) A; = —dz? + z(dy? + dz?) + dw,
(ii) Ay = —da? + z(dy? + dz?) + dydz.
(iii) Az = —dt* + da® + dy* + dz*°.

In the case of the proper invariant line element write down the components of the
metric tensor.

[7 marks|

1.8) Explain briefly why the exterior of a spherically symmetric pulsating star cannot
support gravitational waves. Does the exterior of a collapsing binary star system
support gravitational waves in principle? Justify briefly your answer.

[7 marks]
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SECTION B - Answer TWO questions

2) Consider the two-dimensional spacetime described by the infinitesimal line element:
ds® = —dt* + a(t)’dr?,

where ¢ is the time coordinate.

(i) What does this space-time represent?
[2 marks]

(ii) By using an appropriate variational method, or otherwise, compute the Christof-
fel symbols for the above spacetime.

[6 marks]

(iii) Compute the independent components of the Riemann tensor in this two di-
mensional geometry.

[6 marks]

(iv) Show that the non-vanishing components of the Ricci tensor, for this spacetime
are:

Ry =——=

[8 marks]

(v) Compute the curvature scalar of this spacetime, and discuss the evolution in
cosmic time for the case a?(t) = ¢t. What do you conclude on the existence of a
cosmic horizon? Discuss the behaviour of the universe in the two limiting cases
t — o0, and t = 0.

[8 marks|
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Light in General Relativity follows, by definition, null geodesics. Consider a three-
dimensional space time with Schwarzschild geometry, that is, assume d¢ = 0 and
0 € [0, 27] in the respective formulae in the rubric.

(i) Consider radial motion of light in this three-dimensional Schwarzschild space
time. Work in units for which Gy = ¢ = 1. Show that the radial velocity of light in
book-keeper Schwarzschild coordinates is given by

Explain the physical meaning of the + sign in this formula.
[8 marks|

(ii) Carry out a similar analysis as in (i) but for tangential motion of light in the
three-dimensional Schwarzschild geometry, and show that the tangential velocity

1/2
rd—e =+ <1 — ﬂ) .
dt T

[8 marks|

(iii) Explain why the results in (i) and (ii) do not contradict the special theory of
relativity.

[6 marks|
QUESTION CONTINUES ON NEXT PAGE
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(iv) The general radial part of the equations of motion for light in book-keeper
coordinates of this geometry can be shown to be:

A G

dr oM < oM b2>1/2

where b = L/FE is the impact parameter, with L the angular momentum, and E the
total energy of the light. Use shell coordinates (see rubric) to show that:

1 d’rshell 2 . 1 1 2M 1
b2 dtshell N b2 r 7”2

[2 marks]

(v) From the result of (iv) define the effective potential for light as:

2M
v 1 ==
light —

r2
What can you conclude from this expression concerning the dependence of Vjjg; on
the photon wavelength 7

[1 mark]
Sketch the function Vi, versus /M.

[3 marks]

What is your conclusion regarding the possibility of having stable circular orbits of
light ?

[2 marks]
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4) Consider an expanding Universe described by a Robertson-Walker space time:
ds* = —dt* + a*(t) (dx® + f(x)(d0” + sin*0d¢”)) (1)

where x is the radial coordinate, a(t) the scale factor and f(x) = sinx for closed,
f(x) = x for flat, and f(x) = sinhx for open Universe.

(1) Relate the coordinate x to the distance d from a bright celestial object as measured
by an observer at rest with respect to the coordinate system of (1), and show that

d = a(t)x.

[7 marks]
(ii) State Hubble’s law and use the results of (i) to prove it.

[7 marks|

(iii) Consider the radial motion of light in the space time (1). Using a method of
your choice, write down the geodesics corresponding to the radial x coordinate, and
show that they take form dp, /d\ = 0, where A is the affine parameter, and p, is the
canonical momentum corresponding to the radial coordinate x. Thus, p, = constant,
which by normalization can be set to p, = —1, where the minus sign is due to the
fact that the direction of the photon is towards the observer.

[7 marks|

(iv) Given that the photon - viewed as a particle - is massless, show from (iii) that

the covariant four-momentum of the photon can be written as: p, = (_Tlty —-1,0,0).

[3 marks|

(v) Use without proof that the frequency v of a photon with a covariant four-
momentum p,, as measured by an observer who moves with a four-velocity u* with
respect to the cosmological frame, is v = —p,u#. Show that va(t) = constant, in the
case of a photon emitted by an observer who is static with respect to the cosmological
frame, and received by another observer who is also static with respect to that frame.

[6 marks]
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(i) For an expanding Universe with scale factor a(t), regarded as an ideal fluid, the
change in the total energy dF satisfies the thermodynamic relation: dFE = —pdV,
where dV denotes the change in the proper (spatial) volume, and p is the pressure.
Show that for a fluid with equation of state p = wp, with w a constant, and p the
mass density, one obtains:

dp
— 1 = 2
ada+3( +w)p=0 (2)

[8 marks]

(ii) Integrate (2) to obtain the scaling law of p as a function of a(t), that is:

p ~ =30+

[8 marks]

(iii) Consider the two cases of ‘dust’ and ‘pure radiation’. Using the result of (ii) for
the two cases separately compute the respective scaling laws for the mass densities,
Paust and praq respectively, and then show that praq/pauss < 1/a(t).

[8 marks]

(iv) Using the Stefan-Boltzmann law for the energy of thermal radiation, E.,q = o1,
where « is the radiation constant, and the fact that energy is equivalent to mass
multiplied by ¢? in relativity (where ¢ is the speed of light in vacuo), show that the
temperature of a radiation-dominated Universe is inversely proportional to the scale
factor.

[6 marks]
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