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SECTION A — Answer any SIX parts of this section
A certain analytic function f(z) = u(z,y) + fv(x,y) has an imaginary part
v(z,y) = 4y — 22 + 3y

Use the Cauchy-Riemann equations to determine the real part u(zx,y) of f(2).
[7 marks]

Determine all the values of the number Re (=1 +4)+¢.
[7 marks]

Locate and classify all the singularities in the finite z plane of the function

(22 =32+ 2)(1 — cos 2)

fC) = s =2
[7 marks]
Determine the Laurent series for the function
1
z) = (z—2)(z—4)
which is valid in the region 0 < |z — 2| < 2.
[7 marks]
Determine the residue of the function
1+ cosz
&= Gy
at the point z = 7.
[7 marks]
Use the Bessel function series
0 (_1)7” Z\ 2m+v
eE O
(2) m,zz:() m!T(m+v+1) \2
where I'(z) denotes the gamma function, to derive the relation
d v 124
7 [2¥ J,(2)] = 2" J,_1(2) .
z
[7 marks]

SEE NEXT PAGE
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1.7) A bead of mass m slides on a frictionless wire which has a parametric representation
z=a(0—sinf), y=0, z=a(l+cosh),

where 0 < 6 < 27 and a is a positive constant. The force of gravity acts in the

negative z direction. Derive an expression for the Lagrangian of the system by using
f as a generalized coordinate.

[7 marks]
1.8) Use the method of Lagrange multipliers to find the extremum values of the function

[z, y) = zy,
where the variables  and y are subject to the constraint

2+ 4y? = 4.

[7 marks]

SEE NEXT PAGE
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SECTION B — Answer TWO questions in this section

2) State the residue theorem for evaluating contour integrals in complex analysis.
Describe the various methods that can be used to calculate residues.

[8 marks]
Use the residue theorem to evaluate the following definite integrals:
27 c a2
0
() / sin .
o 9D+4cosh
[9 marks]
&0 COS
b ——dr .
(b) /_oo (2 + 167
[13 marks]

In part (b), justification should be given for the neglect of any contour integral which
is not taken along the real axis.

3) Derive the Hamilton canonical equations of motion for a classical system which has
a Lagrangian L(q1, ... ,qn; {1, - - - ,Gn;t) corresponding to n degrees of freedom.
[8 marks]

A particle of mass m is constrained to move on the surface of a smooth torus which
has a parametric representation

xr=pcosyy, y=psiny, z=bsinh,
where
p=a+bcost, (a>b>0),

with 0 < 4 < 27 and 0 < 6 < 27. No external forces act on the particle. Derive
an expression for the Lagrangian of the system by using # and 1 as generalized
coordinates. Hence show that the Hamiltonian of the system can be written in the

form ,
2 jﬁ
(a+bcosh)? b2

1
H=—

2m

[12 marks]

Derive the Hamilton canonical equations of motion for the particle. Show that if
the particle moves round the outer equatorial circle (6 = 0), then ¢ must be a
constant of the motion. Investigate the stability of this equatorial motion when a
small perturbation is made to the angle 6.

[10 marks]

SEE NEXT PAGE



~5- CP/3201

4) A functional J : A3(zg, 1) — R! is defined by

1

Jy] =/ F(z,y,y.y") dz,

0

where the function F(z,y,y’,y"”) has continuous third-order derivatives with respect
to all its arguments, R! denotes a real number, 3y’ = dy/dx and 3" = d?y/dx?. The
class A3(xo,z1) of admissible functions consists of all functions y(z) which have a
continuous third-order derivative for z9 < z < z; and have the same fixed end-
point values y(zo) = yo, y(z1) = y1, ¥'(z0) = y} and y'(z1) = y;. Prove that if
y(z) € A3(xo,x1) gives an extremum to J[y] then it must necessarily satisfy the

differential equation
or _d (0F\ & (0F\ _,
dy dx \ 0y de2 \oy" )

[16 marks]

A train moving in a straight line has to travel a distance L in a time T and must
be stationary (y = 0) at the beginning (y = 0, £ = 0) and the end (y = L, t =1T)
of the journey. Determine the motion y(t) for 0 < ¢ < T which gives an extremum
value to the passenger discomfort functional

Hence obtain the extremum value of the functional D[y].
[14 marks]

SEE NEXT PAGE
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5) A particle of mass m and energy E has a wave function ¢ (p, ¢, z) which satisfies the
Schrédinger equation in cylindrical polar coordinates (p, ¢, z)

10 ([ oY 10% 9%

—— | p— ———=+ — + kY =0,

pOp (pap) - p? 0¢? Tz TR

where k2 = 2mE /h?. The particle is confined inside a closed cylindrical box with

0<p<a,0<¢p<27and 0<z<a. On the surface of the box the wave function

satisfies the boundary condition ¥ (p,¢,z) = 0. Use the method of separation of
variables to show that the energy eigenfunctions for the particle are

P . (NTZ )
¢v,s,n(p7 b,2)=J, (5‘7”’5) sin (7) eiwqﬁ’

where v = 0,1,2,..., both s,n=1,2,..., and j, 1, ju2, ... are the positive zeros
of the Bessel function J,(z).
[20 marks]

Derive a formula for the corresponding energy eigenvalues F, s, for the particle.
Hence calculate the ground-state energy of the particle in terms of the quantity

h?/(ma?) .
[10 marks]

[It may be assumed that J,(z) is a solution of the differential equation
2 1

22y +xy + (2 - Py =0,

and the smallest positive zero of Jo(z) is jo,1 = 2.40483... ]
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